Sort by:
Page 36 of 41408 results

Assessing fetal lung maturity: Integration of ultrasound radiomics and deep learning.

Chen W, Zeng B, Ling X, Chen C, Lai J, Lin J, Liu X, Zhou H, Guo X

pubmed logopapersMay 16 2025
This study built a model to forecast the maturity of lungs by blending radiomics and deep learning methods. We examined ultrasound images from 263 pregnancies in the pregnancy stages. Utilizing the GE VOLUSON E8 system we captured images to extract and analyze radiomic features. These features were integrated with clinical data by means of deep learning algorithms such as DenseNet121 to enhance the accuracy of assessing fetal lung maturity. This combined model was validated by receiver operating characteristic (ROC) curve, calibration diagram, as well as decision curve analysis (DCA). We discovered that the accuracy and reliability of the diagnosis indicated that this method significantly improves the level of prediction of fetal lung maturity. This novel non-invasive diagnostic technology highlights the potential advantages of integrating diverse data sources to enhance prenatal care and infant health. The study lays groundwork, for validation and refinement of the model across various healthcare settings.

Deep learning progressive distill for predicting clinical response to conversion therapy from preoperative CT images of advanced gastric cancer patients.

Han S, Zhang T, Deng W, Han S, Wu H, Jiang B, Xie W, Chen Y, Deng T, Wen X, Liu N, Fan J

pubmed logopapersMay 16 2025
Identifying patients suitable for conversion therapy through early non-invasive screening is crucial for tailoring treatment in advanced gastric cancer (AGC). This study aimed to develop and validate a deep learning method, utilizing preoperative computed tomography (CT) images, to predict the response to conversion therapy in AGC patients. This retrospective study involved 140 patients. We utilized Progressive Distill (PD) methodology to construct a deep learning model for predicting clinical response to conversion therapy based on preoperative CT images. Patients in the training set (n = 112) and in the test set (n = 28) were sourced from The First Affiliated Hospital of Wenzhou Medical University between September 2017 and November 2023. Our PD models' performance was compared with baseline models and those utilizing Knowledge Distillation (KD), with evaluation metrics including accuracy, sensitivity, specificity, receiver operating characteristic curves, areas under the receiver operating characteristic curve (AUCs), and heat maps. The PD model exhibited the best performance, demonstrating robust discrimination of clinical response to conversion therapy with an AUC of 0.99 and accuracy of 99.11% in the training set, and 0.87 AUC and 85.71% accuracy in the test set. Sensitivity and specificity were 97.44% and 100% respectively in the training set, 85.71% and 85.71% each in the test set, suggesting absence of discernible bias. The deep learning model of PD method accurately predicts clinical response to conversion therapy in AGC patients. Further investigation is warranted to assess its clinical utility alongside clinicopathological parameters.

Pancreas segmentation using AI developed on the largest CT dataset with multi-institutional validation and implications for early cancer detection.

Mukherjee S, Antony A, Patnam NG, Trivedi KH, Karbhari A, Nagaraj M, Murlidhar M, Goenka AH

pubmed logopapersMay 16 2025
Accurate and fully automated pancreas segmentation is critical for advancing imaging biomarkers in early pancreatic cancer detection and for biomarker discovery in endocrine and exocrine pancreatic diseases. We developed and evaluated a deep learning (DL)-based convolutional neural network (CNN) for automated pancreas segmentation using the largest single-institution dataset to date (n = 3031 CTs). Ground truth segmentations were performed by radiologists, which were used to train a 3D nnU-Net model through five-fold cross-validation, generating an ensemble of top-performing models. To assess generalizability, the model was externally validated on the multi-institutional AbdomenCT-1K dataset (n = 585), for which volumetric segmentations were newly generated by expert radiologists and will be made publicly available. In the test subset (n = 452), the CNN achieved a mean Dice Similarity Coefficient (DSC) of 0.94 (SD 0.05), demonstrating high spatial concordance with radiologist-annotated volumes (Concordance Correlation Coefficient [CCC]: 0.95). On the AbdomenCT-1K dataset, the model achieved a DSC of 0.96 (SD 0.04) and a CCC of 0.98, confirming its robustness across diverse imaging conditions. The proposed DL model establishes new performance benchmarks for fully automated pancreas segmentation, offering a scalable and generalizable solution for large-scale imaging biomarker research and clinical translation.

Artificial intelligence generated 3D body composition predicts dose modifications in patients undergoing neoadjuvant chemotherapy for rectal cancer.

Besson A, Cao K, Mardinli A, Wirth L, Yeung J, Kokelaar R, Gibbs P, Reid F, Yeung JM

pubmed logopapersMay 16 2025
Chemotherapy administration is a balancing act between giving enough to achieve the desired tumour response while limiting adverse effects. Chemotherapy dosing is based on body surface area (BSA). Emerging evidence suggests body composition plays a crucial role in the pharmacokinetic and pharmacodynamic profile of cytotoxic agents and could inform optimal dosing. This study aims to assess how lumbosacral body composition influences adverse events in patients receiving neoadjuvant chemotherapy for rectal cancer. A retrospective study (February 2013 to March 2023) examined the impact of body composition on neoadjuvant treatment outcomes for rectal cancer patients. Staging CT scans were analysed using a validated AI model to measure lumbosacral skeletal muscle (SM), intramuscular adipose tissue (IMAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue volume and density. Multivariate analyses explored the relationship between body composition and chemotherapy outcomes. 242 patients were included (164 males, 78 Females), median age 63.4 years. Chemotherapy dose reductions occurred more frequently in females (26.9% vs. 15.9%, p = 0.042) and in females with greater VAT density (-82.7 vs. -89.1, p = 0.007) and SM: IMAT + VAT volume ratio (1.99 vs. 1.36, p = 0.042). BSA was a poor predictor of dose reduction (AUC 0.397, sensitivity 38%, specificity 60%) for female patients, whereas the SM: IMAT + VAT volume ratio (AUC 0.651, sensitivity 76%, specificity 61%) and VAT density (AUC 0.699, sensitivity 57%, specificity 74%) showed greater predictive ability. Body composition didn't influence dose adjustment of male patients. Lumbosacral body composition outperformed BSA in predicting adverse events in female patients with rectal cancer undergoing neoadjuvant chemotherapy.

Development and validation of clinical-radiomics deep learning model based on MRI for endometrial cancer molecular subtypes classification.

Yue W, Han R, Wang H, Liang X, Zhang H, Li H, Yang Q

pubmed logopapersMay 16 2025
This study aimed to develop and validate a clinical-radiomics deep learning (DL) model based on MRI for endometrial cancer (EC) molecular subtypes classification. This multicenter retrospective study included EC patients undergoing surgery, MRI, and molecular pathology diagnosis across three institutions from January 2020 to March 2024. Patients were divided into training, internal, and external validation cohorts. A total of 386 handcrafted radiomics features were extracted from each MR sequence, and MoCo-v2 was employed for contrastive self-supervised learning to extract 2048 DL features per patient. Feature selection integrated selected features into 12 machine learning methods. Model performance was evaluated with the AUC. A total of 526 patients were included (mean age, 55.01 ± 11.07). The radiomics model and clinical model demonstrated comparable performance across the internal and external validation cohorts, with macro-average AUCs of 0.70 vs 0.69 and 0.70 vs 0.67 (p = 0.51), respectively. The radiomics DL model, compared to the radiomics model, improved AUCs for POLEmut (0.68 vs 0.79), NSMP (0.71 vs 0.74), and p53abn (0.76 vs 0.78) in the internal validation (p = 0.08). The clinical-radiomics DL Model outperformed both the clinical model and radiomics DL model (macro-average AUC = 0.79 vs 0.69 and 0.73, in the internal validation [p = 0.02], 0.74 vs 0.67 and 0.69 in the external validation [p = 0.04]). The clinical-radiomics DL model based on MRI effectively distinguished EC molecular subtypes and demonstrated strong potential, with robust validation across multiple centers. Future research should explore larger datasets to further uncover DL's potential. Our clinical-radiomics DL model based on MRI has the potential to distinguish EC molecular subtypes. This insight aids in guiding clinicians in tailoring individualized treatments for EC patients. Accurate classification of EC molecular subtypes is crucial for prognostic risk assessment. The clinical-radiomics DL model outperformed both the clinical model and the radiomics DL model. The MRI features exhibited better diagnostic performance for POLEmut and p53abn.

Automated high precision PCOS detection through a segment anything model on super resolution ultrasound ovary images.

Reka S, Praba TS, Prasanna M, Reddy VNN, Amirtharajan R

pubmed logopapersMay 15 2025
PCOS (Poly-Cystic Ovary Syndrome) is a multifaceted disorder that often affects the ovarian morphology of women of their reproductive age, resulting in the development of numerous cysts on the ovaries. Ultrasound imaging typically diagnoses PCOS, which helps clinicians assess the size, shape, and existence of cysts in the ovaries. Nevertheless, manual ultrasound image analysis is often challenging and time-consuming, resulting in inter-observer variability. To effectively treat PCOS and prevent its long-term effects, prompt and accurate diagnosis is crucial. In such cases, a prediction model based on deep learning can help physicians by streamlining the diagnosis procedure, reducing time and potential errors. This article proposes a novel integrated approach, QEI-SAM (Quality Enhanced Image - Segment Anything Model), for enhancing image quality and ovarian cyst segmentation for accurate prediction. GAN (Generative Adversarial Networks) and CNN (Convolutional Neural Networks) are the most recent cutting-edge innovations that have supported the system in attaining the expected result. The proposed QEI-SAM model used Enhanced Super Resolution Generative Adversarial Networks (ESRGAN) for image enhancement to increase the resolution, sharpening the edges and restoring the finer structure of the ultrasound ovary images and achieved a better SSIM of 0.938, PSNR value of 38.60 and LPIPS value of 0.0859. Then, it incorporates the Segment Anything Model (SAM) to segment ovarian cysts and achieve the highest Dice coefficient of 0.9501 and IoU score of 0.9050. Furthermore, Convolutional Neural Network - ResNet 50, ResNet 101, VGG 16, VGG 19, AlexNet and Inception v3 have been implemented to diagnose PCOS promptly. Finally, VGG 19 has achieved the highest accuracy of 99.31%.

A computed tomography-based radiomics prediction model for BRAF mutation status in colorectal cancer.

Zhou B, Tan H, Wang Y, Huang B, Wang Z, Zhang S, Zhu X, Wang Z, Zhou J, Cao Y

pubmed logopapersMay 15 2025
The aim of this study was to develop and validate CT venous phase image-based radiomics to predict BRAF gene mutation status in preoperative colorectal cancer patients. In this study, 301 patients with pathologically confirmed colorectal cancer were retrospectively enrolled, comprising 225 from Centre I (73 mutant and 152 wild-type) and 76 from Centre II (36 mutant and 40 wild-type). The Centre I cohort was randomly divided into a training set (n = 158) and an internal validation set (n = 67) in a 7:3 ratio, while Centre II served as an independent external validation set (n = 76). The whole tumor region of interest was segmented, and radiomics characteristics were extracted. To explore whether tumor expansion could improve the performance of the study objectives, the tumor contour was extended by 3 mm in this study. Finally, a t-test, Pearson correlation, and LASSO regression were used to screen out features strongly associated with BRAF mutations. Based on these features, six classifiers-Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost)-were constructed. The model performance and clinical utility were evaluated using receiver operating characteristic (ROC) curves, decision curve analysis, accuracy, sensitivity, and specificity. Gender was an independent predictor of BRAF mutations. The unexpanded RF model, constructed using 11 imaging histologic features, demonstrated the best predictive performance. For the training cohort, it achieved an AUC of 0.814 (95% CI 0.732-0.895), an accuracy of 0.810, and a sensitivity of 0.620. For the internal validation cohort, it achieved an AUC of 0.798 (95% CI 0.690-0.907), an accuracy of 0.761, and a sensitivity of 0.609. For the external validation cohort, it achieved an AUC of 0.737 (95% CI 0.616-0.847), an accuracy of 0.658, and a sensitivity of 0.667. A machine learning model based on CT radiomics can effectively predict BRAF mutations in patients with colorectal cancer. The unexpanded RF model demonstrated optimal predictive performance.

Interobserver agreement between artificial intelligence models in the thyroid imaging and reporting data system (TIRADS) assessment of thyroid nodules.

Leoncini A, Trimboli P

pubmed logopapersMay 15 2025
As ultrasound (US) is the most accurate tool for assessing the thyroid nodule (TN) risk of malignancy (RoM), international societies have published various Thyroid Imaging and Reporting Data Systems (TIRADSs). With the recent advent of artificial intelligence (AI), clinicians and researchers should ask themselves how AI could interpret the terminology of the TIRADSs and whether or not AIs agree in the risk assessment of TNs. The study aim was to analyze the interobserver agreement (IOA) between AIs in assessing the RoM of TNs across various TIRADSs categories using a cases series created combining TIRADSs descriptors. ChatGPT, Google Gemini, and Claude were compared. ACR-TIRADS, EU-TIRADS, and K-TIRADS, were employed to evaluate the AI assessment. Multiple written scenarios for the three TIRADS were created, the cases were evaluated by the three AIs, and their assessments were analyzed and compared. The IOA was estimated by comparing the kappa (κ) values. Ninety scenarios were created. With ACR-TIRADS the IOA analysis gave κ = 0.58 between ChatGPT and Gemini, 0.53 between ChatGPT and Claude, and 0.90 between Gemini and Claude. With EU-TIRADS it was observed κ value = 0.73 between ChatGPT and Gemini, 0.62 between ChatGPT and Claude, and 0.72 between Gemini and Claude. With K-TIRADS it was found κ = 0.88 between ChatGPT and Gemini, 0.70 between ChatGPT and Claude, and 0.61 between Gemini and Claude. This study found that there were non-negligible variability between the three AIs. Clinicians and patients should be aware of these new findings.

Predicting Immunotherapy Response in Unresectable Hepatocellular Carcinoma: A Comparative Study of Large Language Models and Human Experts.

Xu J, Wang J, Li J, Zhu Z, Fu X, Cai W, Song R, Wang T, Li H

pubmed logopapersMay 15 2025
Hepatocellular carcinoma (HCC) is an aggressive cancer with limited biomarkers for predicting immunotherapy response. Recent advancements in large language models (LLMs) like GPT-4, GPT-4o, and Gemini offer the potential for enhancing clinical decision-making through multimodal data analysis. However, their effectiveness in predicting immunotherapy response, especially compared to human experts, remains unclear. This study assessed the performance of GPT-4, GPT-4o, and Gemini in predicting immunotherapy response in unresectable HCC, compared to radiologists and oncologists of varying expertise. A retrospective analysis of 186 patients with unresectable HCC utilized multimodal data (clinical and CT images). LLMs were evaluated with zero-shot prompting and two strategies: the 'voting method' and the 'OR rule method' for improved sensitivity. Performance metrics included accuracy, sensitivity, area under the curve (AUC), and agreement across LLMs and physicians.GPT-4o, using the 'OR rule method,' achieved 65% accuracy and 47% sensitivity, comparable to intermediate physicians but lower than senior physicians (accuracy: 72%, p = 0.045; sensitivity: 70%, p < 0.0001). Gemini-GPT, combining GPT-4, GPT-4o, and Gemini, achieved an AUC of 0.69, similar to senior physicians (AUC: 0.72, p = 0.35), with 68% accuracy, outperforming junior and intermediate physicians while remaining comparable to senior physicians (p = 0.78). However, its sensitivity (58%) was lower than senior physicians (p = 0.0097). LLMs demonstrated higher inter-model agreement (κ = 0.59-0.70) than inter-physician agreement, especially among junior physicians (κ = 0.15). This study highlights the potential of LLMs, particularly Gemini-GPT, as valuable tools in predicting immunotherapy response for HCC.

Machine Learning-Based Multimodal Radiomics and Transcriptomics Models for Predicting Radiotherapy Sensitivity and Prognosis in Esophageal Cancer.

Ye C, Zhang H, Chi Z, Xu Z, Cai Y, Xu Y, Tong X

pubmed logopapersMay 15 2025
Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.
Page 36 of 41408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.