Sort by:
Page 35 of 35350 results

Enhancing efficient deep learning models with multimodal, multi-teacher insights for medical image segmentation.

Hossain KF, Kamran SA, Ong J, Tavakkoli A

pubmed logopapersMay 7 2025
The rapid evolution of deep learning has dramatically enhanced the field of medical image segmentation, leading to the development of models with unprecedented accuracy in analyzing complex medical images. Deep learning-based segmentation holds significant promise for advancing clinical care and enhancing the precision of medical interventions. However, these models' high computational demand and complexity present significant barriers to their application in resource-constrained clinical settings. To address this challenge, we introduce Teach-Former, a novel knowledge distillation (KD) framework that leverages a Transformer backbone to effectively condense the knowledge of multiple teacher models into a single, streamlined student model. Moreover, it excels in the contextual and spatial interpretation of relationships across multimodal images for more accurate and precise segmentation. Teach-Former stands out by harnessing multimodal inputs (CT, PET, MRI) and distilling the final predictions and the intermediate attention maps, ensuring a richer spatial and contextual knowledge transfer. Through this technique, the student model inherits the capacity for fine segmentation while operating with a significantly reduced parameter set and computational footprint. Additionally, introducing a novel training strategy optimizes knowledge transfer, ensuring the student model captures the intricate mapping of features essential for high-fidelity segmentation. The efficacy of Teach-Former has been effectively tested on two extensive multimodal datasets, HECKTOR21 and PI-CAI22, encompassing various image types. The results demonstrate that our KD strategy reduces the model complexity and surpasses existing state-of-the-art methods to achieve superior performance. The findings of this study indicate that the proposed methodology could facilitate efficient segmentation of complex multimodal medical images, supporting clinicians in achieving more precise diagnoses and comprehensive monitoring of pathological conditions ( https://github.com/FarihaHossain/TeachFormer ).

Interpretable MRI-Based Deep Learning for Alzheimer's Risk and Progression

Lu, B., Chen, Y.-R., Li, R.-X., Zhang, M.-K., Yan, S.-Z., Chen, G.-Q., Castellanos, F. X., Thompson, P. M., Lu, J., Han, Y., Yan, C.-G.

medrxiv logopreprintMay 7 2025
Timely intervention for Alzheimers disease (AD) requires early detection. The development of immunotherapies targeting amyloid-beta and tau underscores the need for accessible, time-efficient biomarkers for early diagnosis. Here, we directly applied our previously developed MRI-based deep learning model for AD to the large Chinese SILCODE cohort (722 participants, 1,105 brain MRI scans). The model -- initially trained on North American data -- demonstrated robust cross-ethnic generalization, without any retraining or fine-tuning, achieving an AUC of 91.3% in AD classification with a sensitivity of 95.2%. It successfully identified 86.7% of individuals at risk of AD progression more than 5 years in advance. Individuals identified as high-risk exhibited significantly shorter median progression times. By integrating an interpretable deep learning brain risk map approach, we identified AD brain subtypes, including an MCI subtype associated with rapid cognitive decline. The models risk scores showed significant correlations with cognitive measures and plasma biomarkers, such as tau proteins and neurofilament light chain (NfL). These findings underscore the exceptional generalizability and clinical utility of MRI-based deep learning models, especially in large and diverse populations, offering valuable tools for early therapeutic intervention. The model has been made open-source and deployed to a free online website for AD risk prediction, to assist in early screening and intervention.

ChatOCT: Embedded Clinical Decision Support Systems for Optical Coherence Tomography in Offline and Resource-Limited Settings.

Liu C, Zhang H, Zheng Z, Liu W, Gu C, Lan Q, Zhang W, Yang J

pubmed logopapersMay 7 2025
Optical Coherence Tomography (OCT) is a critical imaging modality for diagnosing ocular and systemic conditions, yet its accessibility is hindered by the need for specialized expertise and high computational demands. To address these challenges, we introduce ChatOCT, an offline-capable, domain-adaptive clinical decision support system (CDSS) that integrates structured expert Q&A generation, OCT-specific knowledge injection, and activation-aware model compression. Unlike existing systems, ChatOCT functions without internet access, making it suitable for low-resource environments. ChatOCT is built upon LLaMA-2-7B, incorporating domain-specific knowledge from PubMed and OCT News through a two-stage training process: (1) knowledge injection for OCT-specific expertise and (2) Q&A instruction tuning for structured, interactive diagnostic reasoning. To ensure feasibility in offline environments, we apply activation-aware weight quantization, reducing GPU memory usage to ~ 4.74 GB, enabling deployment on standard OCT hardware. A novel expert answer generation framework mitigates hallucinations by structuring responses in a multi-step process, ensuring accuracy and interpretability. ChatOCT outperforms state-of-the-art baselines such as LLaMA-2, PMC-LLaMA-13B, and ChatDoctor by 10-15 points in coherence, relevance, and clinical utility, while reducing GPU memory requirements by 79%, while maintaining real-time responsiveness (~ 20 ms inference time). Expert ophthalmologists rated ChatOCT's outputs as clinically actionable and aligned with real-world decision-making needs, confirming its potential to assist frontline healthcare providers. ChatOCT represents an innovative offline clinical decision support system for optical coherence tomography (OCT) that runs entirely on local embedded hardware, enabling real-time analysis in resource-limited settings without internet connectivity. By offering a scalable, generalizable pipeline that integrates knowledge injection, instruction tuning, and model compression, ChatOCT provides a blueprint for next-generation, resource-efficient clinical AI solutions across multiple medical domains.

Cross-organ all-in-one parallel compressed sensing magnetic resonance imaging

Baoshun Shi, Zheng Liu, Xin Meng, Yan Yang

arxiv logopreprintMay 7 2025
Recent advances in deep learning-based parallel compressed sensing magnetic resonance imaging (p-CSMRI) have significantly improved reconstruction quality. However, current p-CSMRI methods often require training separate deep neural network (DNN) for each organ due to anatomical variations, creating a barrier to developing generalized medical image reconstruction systems. To address this, we propose CAPNet (cross-organ all-in-one deep unfolding p-CSMRI network), a unified framework that implements a p-CSMRI iterative algorithm via three specialized modules: auxiliary variable module, prior module, and data consistency module. Recognizing that p-CSMRI systems often employ varying sampling ratios for different organs, resulting in organ-specific artifact patterns, we introduce an artifact generation submodule, which extracts and integrates artifact features into the data consistency module to enhance the discriminative capability of the overall network. For the prior module, we design an organ structure-prompt generation submodule that leverages structural features extracted from the segment anything model (SAM) to create cross-organ prompts. These prompts are strategically incorporated into the prior module through an organ structure-aware Mamba submodule. Comprehensive evaluations on a cross-organ dataset confirm that CAPNet achieves state-of-the-art reconstruction performance across multiple anatomical structures using a single unified model. Our code will be published at https://github.com/shibaoshun/CAPNet.

Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation

Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen

arxiv logopreprintMay 6 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation

Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond

arxiv logopreprintMay 6 2025
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.

Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications

Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang

arxiv logopreprintMay 6 2025
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.

MRISeqClassifier: A Deep Learning Toolkit for Precise MRI Sequence Classification.

Pan J, Chen Q, Sun C, Liang R, Bian J, Xu J

pubmed logopapersJan 1 2025
Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool in medicine, widely used to detect and assess various health conditions. Different MRI sequences, such as T1-weighted, T2-weighted, and FLAIR, serve distinct roles by highlighting different tissue characteristics and contrasts. However, distinguishing them based solely on the description file is currently impossible due to confusing or incorrect annotations. Additionally, there is a notable lack of effective tools to differentiate these sequences. In response, we developed a deep learning-based toolkit tailored for small, unrefined MRI datasets. This toolkit enables precise sequence classification and delivers performance comparable to systems trained on large, meticulously curated datasets. Utilizing lightweight model architectures and incorporating a voting ensemble method, the toolkit enhances accuracy and stability. It achieves a 99% accuracy rate using only 10% of the data typically required in other research. The code is available at https://github.com/JinqianPan/MRISeqClassifier.

Clinical-radiomics models with machine-learning algorithms to distinguish uncomplicated from complicated acute appendicitis in adults: a multiphase multicenter cohort study.

Li L, Sun Y, Sun Y, Gao Y, Zhang B, Qi R, Sheng F, Yang X, Liu X, Liu L, Lu C, Chen L, Zhang K

pubmed logopapersJan 1 2025
Increasing evidence suggests that non-operative management (NOM) with antibiotics could serve as a safe alternative to surgery for the treatment of uncomplicated acute appendicitis (AA). However, accurately differentiating between uncomplicated and complicated AA remains challenging. Our aim was to develop and validate machine-learning-based diagnostic models to differentiate uncomplicated from complicated AA. This was a multicenter cohort trial conducted from January 2021 and December 2022 across five tertiary hospitals. Three distinct diagnostic models were created, namely, the clinical-parameter-based model, the CT-radiomics-based model, and the clinical-radiomics-fused model. These models were developed using a comprehensive set of eight machine-learning algorithms, which included logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), gradient boosting (GB), K-nearest neighbors (KNN), Gaussian Naïve Bayes (GNB), and multi-layer perceptron (MLP). The performance and accuracy of these diverse models were compared. All models exhibited excellent diagnostic performance in the training cohort, achieving a maximal AUC of 1.00. For the clinical-parameter model, the GB classifier yielded the optimal AUC of 0.77 (95% confidence interval [CI]: 0.64-0.90) in the testing cohort, while the LR classifier yielded the optimal AUC of 0.76 (95% CI: 0.66-0.86) in the validation cohort. For the CT-radiomics-based model, GB classifier achieved the best AUC of 0.74 (95% CI: 0.60-0.88) in the testing cohort, and SVM yielded an optimal AUC of 0.63 (95% CI: 0.51-0.75) in the validation cohort. For the clinical-radiomics-fused model, RF classifier yielded an optimal AUC of 0.84 (95% CI: 0.74-0.95) in the testing cohort and 0.76 (95% CI: 0.67-0.86) in the validation cohort. An open-access, user-friendly online tool was developed for clinical application. This multicenter study suggests that the clinical-radiomics-fused model, constructed using RF algorithm, effectively differentiated between complicated and uncomplicated AA.

Neurovision: A deep learning driven web application for brain tumour detection using weight-aware decision approach.

Santhosh TRS, Mohanty SN, Pradhan NR, Khan T, Derbali M

pubmed logopapersJan 1 2025
In recent times, appropriate diagnosis of brain tumour is a crucial task in medical system. Therefore, identification of a potential brain tumour is challenging owing to the complex behaviour and structure of the human brain. To address this issue, a deep learning-driven framework consisting of four pre-trained models viz DenseNet169, VGG-19, Xception, and EfficientNetV2B2 is developed to classify potential brain tumours from medical resonance images. At first, the deep learning models are trained and fine-tuned on the training dataset, obtained validation scores of trained models are considered as model-wise weights. Then, trained models are subsequently evaluated on the test dataset to generate model-specific predictions. In the weight-aware decision module, the class-bucket of a probable output class is updated with the weights of deep models when their predictions match the class. Finally, the bucket with the highest aggregated value is selected as the final output class for the input image. A novel weight-aware decision mechanism is a key feature of this framework, which effectively deals tie situations in multi-class classification compared to conventional majority-based techniques. The developed framework has obtained promising results of 98.7%, 97.52%, and 94.94% accuracy on three different datasets. The entire framework is seamlessly integrated into an end-to-end web-application for user convenience. The source code, dataset and other particulars are publicly released at https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app [Rishik Sai Santhosh, "Brain Tumour Image Classification Application," https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app] for academic, research and other non-commercial usage.
Page 35 of 35350 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.