Sort by:
Page 34 of 34338 results

Application of artificial intelligence in X-ray imaging analysis for knee arthroplasty: A systematic review.

Zhang Z, Hui X, Tao H, Fu Z, Cai Z, Zhou S, Yang K

pubmed logopapersJan 1 2025
Artificial intelligence (AI) is a promising and powerful technology with increasing use in orthopedics. The global morbidity of knee arthroplasty is expanding. This study investigated the use of AI algorithms to review radiographs of knee arthroplasty. The Ovid-Embase, Web of Science, Cochrane Library, PubMed, China National Knowledge Infrastructure (CNKI), WeiPu (VIP), WanFang, and China Biology Medicine (CBM) databases were systematically screened from inception to March 2024 (PROSPERO study protocol registration: CRD42024507549). The quality assessment of the diagnostic accuracy studies tool assessed the risk of bias. A total of 21 studies were included in the analysis. Of these, 10 studies identified and classified implant brands, 6 measured implant size and component alignment, 3 detected implant loosening, and 2 diagnosed prosthetic joint infections (PJI). For classifying and identifying implant brands, 5 studies demonstrated near-perfect prediction with an area under the curve (AUC) ranging from 0.98 to 1.0, and 10 achieved accuracy (ACC) between 96-100%. Regarding implant measurement, one study showed an AUC of 0.62, and two others exhibited over 80% ACC in determining component sizes. Moreover, Artificial intelligence showed good to excellent reliability across all angles in three separate studies (Intraclass Correlation Coefficient > 0.78). In predicting PJI, one study achieved an AUC of 0.91 with a corresponding ACC of 90.5%, while another reported a positive predictive value ranging from 75% to 85%. For detecting implant loosening, the AUC was found to be at least as high as 0.976 with ACC ranging from 85.8% to 97.5%. These studies show that AI is promising in recognizing implants in knee arthroplasty. Future research should follow a rigorous approach to AI development, with comprehensive and transparent reporting of methods and the creation of open-source software programs and commercial tools that can provide clinicians with objective clinical decisions.

OA-HybridCNN (OHC): An advanced deep learning fusion model for enhanced diagnostic accuracy in knee osteoarthritis imaging.

Liao Y, Yang G, Pan W, Lu Y

pubmed logopapersJan 1 2025
Knee osteoarthritis (KOA) is a leading cause of disability globally. Early and accurate diagnosis is paramount in preventing its progression and improving patients' quality of life. However, the inconsistency in radiologists' expertise and the onset of visual fatigue during prolonged image analysis often compromise diagnostic accuracy, highlighting the need for automated diagnostic solutions. In this study, we present an advanced deep learning model, OA-HybridCNN (OHC), which integrates ResNet and DenseNet architectures. This integration effectively addresses the gradient vanishing issue in DenseNet and augments prediction accuracy. To evaluate its performance, we conducted a thorough comparison with other deep learning models using five-fold cross-validation and external tests. The OHC model outperformed its counterparts across all performance metrics. In external testing, OHC exhibited an accuracy of 91.77%, precision of 92.34%, and recall of 91.36%. During the five-fold cross-validation, its average AUC and ACC were 86.34% and 87.42%, respectively. Deep learning, particularly exemplified by the OHC model, has greatly improved the efficiency and accuracy of KOA imaging diagnosis. The adoption of such technologies not only alleviates the burden on radiologists but also significantly enhances diagnostic precision.

XLLC-Net: A lightweight and explainable CNN for accurate lung cancer classification using histopathological images.

Jim JR, Rayed ME, Mridha MF, Nur K

pubmed logopapersJan 1 2025
Lung cancer imaging plays a crucial role in early diagnosis and treatment, where machine learning and deep learning have significantly advanced the accuracy and efficiency of disease classification. This study introduces the Explainable and Lightweight Lung Cancer Net (XLLC-Net), a streamlined convolutional neural network designed for classifying lung cancer from histopathological images. Using the LC25000 dataset, which includes three lung cancer classes and two colon cancer classes, we focused solely on the three lung cancer classes for this study. XLLC-Net effectively discerns complex disease patterns within these classes. The model consists of four convolutional layers and contains merely 3 million parameters, considerably reducing its computational footprint compared to existing deep learning models. This compact architecture facilitates efficient training, completing each epoch in just 60 seconds. Remarkably, XLLC-Net achieves a classification accuracy of 99.62% [Formula: see text] 0.16%, with precision, recall, and F1 score of 99.33% [Formula: see text] 0.30%, 99.67% [Formula: see text] 0.30%, and 99.70% [Formula: see text] 0.30%, respectively. Furthermore, the integration of Explainable AI techniques, such as Saliency Map and GRAD-CAM, enhances the interpretability of the model, offering clear visual insights into its decision-making process. Our results underscore the potential of lightweight DL models in medical imaging, providing high accuracy and rapid training while ensuring model transparency and reliability.

A novel spectral transformation technique based on special functions for improved chest X-ray image classification.

Aljohani A

pubmed logopapersJan 1 2025
Chest X-ray image classification plays an important role in medical diagnostics. Machine learning algorithms enhanced the performance of these classification algorithms by introducing advance techniques. These classification algorithms often requires conversion of a medical data to another space in which the original data is reduced to important values or moments. We developed a mechanism which converts a given medical image to a spectral space which have a base set composed of special functions. In this study, we propose a chest X-ray image classification method based on spectral coefficients. The spectral coefficients are based on an orthogonal system of Legendre type smooth polynomials. We developed the mathematical theory to calculate spectral moment in Legendre polynomails space and use these moments to train traditional classifier like SVM and random forest for a classification task. The procedure is applied to a latest data set of X-Ray images. The data set is composed of X-Ray images of three different classes of patients, normal, Covid infected and pneumonia. The moments designed in this study, when used in SVM or random forest improves its ability to classify a given X-Ray image at a high accuracy. A parametric study of the proposed approach is presented. The performance of these spectral moments is checked in Support vector machine and Random forest algorithm. The efficiency and accuracy of the proposed method is presented in details. All our simulation is performed in computation softwares, Matlab and Python. The image pre processing and spectral moments generation is performed in Matlab and the implementation of the classifiers is performed with python. It is observed that the proposed approach works well and provides satisfactory results (0.975 accuracy), however further studies are required to establish a more accurate and fast version of this approach.

Improved swin transformer-based thorax disease classification with optimal feature selection using chest X-ray.

Rana N, Coulibaly Y, Noor A, Noor TH, Alam MI, Khan Z, Tahir A, Khan MZ

pubmed logopapersJan 1 2025
Thoracic diseases, including pneumonia, tuberculosis, lung cancer, and others, pose significant health risks and require timely and accurate diagnosis to ensure proper treatment. Thus, in this research, a model for thorax disease classification using Chest X-rays is proposed by considering deep learning model. The input is pre-processed by resizing, normalizing pixel values, and applying data augmentation to address the issue of imbalanced datasets and improve model generalization. Significant features are extracted from the images using an Enhanced Auto-Encoder (EnAE) model, which combines a stacked auto-encoder architecture with an attention module to enhance feature representation and classification accuracy. To further improve feature selection, we utilize the Chaotic Whale Optimization (ChWO) Algorithm, which optimally selects the most relevant attributes from the extracted features. Finally, the disease classification is performed using the novel Improved Swin Transformer (IMSTrans) model, which is designed to efficiently process high-dimensional medical image data and achieve superior classification performance. The proposed EnAE + ChWO+IMSTrans model for thorax disease classification was evaluated using extensive Chest X-ray datasets and the Lung Disease Dataset. The proposed method demonstrates enhanced Accuracy, Precision, Recall, F-Score, MCC and MAE of 0.964, 0.977, 0.9845, 0.964, 0.9647, and 0.184 respectively indicating the reliable and efficient solution for thorax disease classification.

YOLOv8 framework for COVID-19 and pneumonia detection using synthetic image augmentation.

A Hasib U, Md Abu R, Yang J, Bhatti UA, Ku CS, Por LY

pubmed logopapersJan 1 2025
Early and accurate detection of COVID-19 and pneumonia through medical imaging is critical for effective patient management. This study aims to develop a robust framework that integrates synthetic image augmentation with advanced deep learning (DL) models to address dataset imbalance, improve diagnostic accuracy, and enhance trust in artificial intelligence (AI)-driven diagnoses through Explainable AI (XAI) techniques. The proposed framework benchmarks state-of-the-art models (InceptionV3, DenseNet, ResNet) for initial performance evaluation. Synthetic images are generated using Feature Interpolation through Linear Mapping and principal component analysis to enrich dataset diversity and balance class distribution. YOLOv8 and InceptionV3 models, fine-tuned via transfer learning, are trained on the augmented dataset. Grad-CAM is used for model explainability, while large language models (LLMs) support visualization analysis to enhance interpretability. YOLOv8 achieved superior performance with 97% accuracy, precision, recall, and F1-score, outperforming benchmark models. Synthetic data generation effectively reduced class imbalance and improved recall for underrepresented classes. Comparative analysis demonstrated significant advancements over existing methodologies. XAI visualizations (Grad-CAM heatmaps) highlighted anatomically plausible focus areas aligned with clinical markers of COVID-19 and pneumonia, thereby validating the model's decision-making process. The integration of synthetic data generation, advanced DL, and XAI significantly enhances the detection of COVID-19 and pneumonia while fostering trust in AI systems. YOLOv8's high accuracy, coupled with interpretable Grad-CAM visualizations and LLM-driven analysis, promotes transparency crucial for clinical adoption. Future research will focus on developing a clinically viable, human-in-the-loop diagnostic workflow, further optimizing performance through the integration of transformer-based language models to improve interpretability and decision-making.

Enhancing Disease Detection in Radiology Reports Through Fine-tuning Lightweight LLM on Weak Labels.

Wei Y, Wang X, Ong H, Zhou Y, Flanders A, Shih G, Peng Y

pubmed logopapersJan 1 2025
Despite significant progress in applying large language models (LLMs) to the medical domain, several limitations still prevent them from practical applications. Among these are the constraints on model size and the lack of cohort-specific labeled datasets. In this work, we investigated the potential of improving a lightweight LLM, such as Llama 3.1-8B, through fine-tuning with datasets using synthetic labels. Two tasks are jointly trained by combining their respective instruction datasets. When the quality of the task-specific synthetic labels is relatively high (e.g., generated by GPT4-o), Llama 3.1-8B achieves satisfactory performance on the open-ended disease detection task, with a micro F1 score of 0.91. Conversely, when the quality of the task-relevant synthetic labels is relatively low (e.g., from the MIMIC-CXR dataset), fine-tuned Llama 3.1-8B is able to surpass its noisy teacher labels (micro F1 score of 0.67 v.s. 0.63) when calibrated against curated labels, indicating the strong inherent underlying capability of the model. These findings demonstrate the potential offine-tuning LLMs with synthetic labels, offering a promising direction for future research on LLM specialization in the medical domain.

Enhancement of Fairness in AI for Chest X-ray Classification.

Jackson NJ, Yan C, Malin BA

pubmed logopapersJan 1 2024
The use of artificial intelligence (AI) in medicine has shown promise to improve the quality of healthcare decisions. However, AI can be biased in a manner that produces unfair predictions for certain demographic subgroups. In MIMIC-CXR, a publicly available dataset of over 300,000 chest X-ray images, diagnostic AI has been shown to have a higher false negative rate for racial minorities. We evaluated the capacity of synthetic data augmentation, oversampling, and demographic-based corrections to enhance the fairness of AI predictions. We show that adjusting unfair predictions for demographic attributes, such as race, is ineffective at improving fairness or predictive performance. However, using oversampling and synthetic data augmentation to modify disease prevalence reduced such disparities by 74.7% and 10.6%, respectively. Moreover, such fairness gains were accomplished without reduction in performance (95% CI AUC: [0.816, 0.820] versus [0.810, 0.819] versus [0.817, 0.821] for baseline, oversampling, and augmentation, respectively).
Page 34 of 34338 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.