Sort by:
Page 34 of 42411 results

The Role of Digital Technologies in Personalized Craniomaxillofacial Surgical Procedures.

Daoud S, Shhadeh A, Zoabi A, Redenski I, Srouji S

pubmed logopapersMay 17 2025
Craniomaxillofacial (CMF) surgery addresses complex challenges, balancing aesthetic and functional restoration. Digital technologies, including advanced imaging, virtual surgical planning, computer-aided design, and 3D printing, have revolutionized this field. These tools improve accuracy and optimize processes across all surgical phases, from diagnosis to postoperative evaluation. CMF's unique demands are met through patient-specific solutions that optimize outcomes. Emerging technologies like artificial intelligence, extended reality, robotics, and bioprinting promise to overcome limitations, driving the future of personalized, technology-driven CMF care.

Evaluating the Performance of Reasoning Large Language Models on Japanese Radiology Board Examination Questions.

Nakaura T, Takamure H, Kobayashi N, Shiraishi K, Yoshida N, Nagayama Y, Uetani H, Kidoh M, Funama Y, Hirai T

pubmed logopapersMay 17 2025
This study evaluates the performance, cost, and processing time of OpenAI's reasoning large language models (LLMs) (o1-preview, o1-mini) and their base models (GPT-4o, GPT-4o-mini) on Japanese radiology board examination questions. A total of 210 questions from the 2022-2023 official board examinations of the Japan Radiological Society were presented to each of the four LLMs. Performance was evaluated by calculating the percentage of correctly answered questions within six predefined radiology subspecialties. The total cost and processing time for each model were also recorded. The McNemar test was used to assess the statistical significance of differences in accuracy between paired model responses. The o1-preview achieved the highest accuracy (85.7%), significantly outperforming GPT-4o (73.3%, P<.001). Similarly, o1-mini (69.5%) performed significantly better than GPT-4o-mini (46.7%, P<.001). Across all radiology subspecialties, o1-preview consistently ranked highest. However, reasoning models incurred substantially higher costs (o1-preview: $17.10, o1-mini: $2.58) compared to their base counterparts (GPT-4o: $0.496, GPT-4o-mini: $0.04), and their processing times were approximately 3.7 and 1.2 times longer, respectively. Reasoning LLMs demonstrated markedly superior performance in answering radiology board exam questions compared to their base models, albeit at a substantially higher cost and increased processing time.

Measurement Score-Based Diffusion Model

Chicago Y. Park, Shirin Shoushtari, Hongyu An, Ulugbek S. Kamilov

arxiv logopreprintMay 17 2025
Diffusion models are widely used in applications ranging from image generation to inverse problems. However, training diffusion models typically requires clean ground-truth images, which are unavailable in many applications. We introduce the Measurement Score-based diffusion Model (MSM), a novel framework that learns partial measurement scores using only noisy and subsampled measurements. MSM models the distribution of full measurements as an expectation over partial scores induced by randomized subsampling. To make the MSM representation computationally efficient, we also develop a stochastic sampling algorithm that generates full images by using a randomly selected subset of partial scores at each step. We additionally propose a new posterior sampling method for solving inverse problems that reconstructs images using these partial scores. We provide a theoretical analysis that bounds the Kullback-Leibler divergence between the distributions induced by full and stochastic sampling, establishing the accuracy of the proposed algorithm. We demonstrate the effectiveness of MSM on natural images and multi-coil MRI, showing that it can generate high-quality images and solve inverse problems -- all without access to clean training data. Code is available at https://github.com/wustl-cig/MSM.

Fully Automated Evaluation of Condylar Remodeling after Orthognathic Surgery in Skeletal Class II Patients Using Deep Learning and Landmarks.

Jia W, Wu H, Mei L, Wu J, Wang M, Cui Z

pubmed logopapersMay 17 2025
Condylar remodeling is a key prognostic indicator in maxillofacial surgery for skeletal class II patients. This study aimed to develop and validate a fully automated method leveraging landmark-guided segmentation and registration for efficient assessment of condylar remodeling. A V-Net-based deep learning workflow was developed to automatically segment the mandible and localize anatomical landmarks from CT images. Cutting planes were computed based on the landmarks to segment the condylar and ramus volumes from the mandible mask. The stable ramus served as a reference for registering pre- and post-operative condyles using the Iterative Closest Point (ICP) algorithm. Condylar remodeling was subsequently assessed through mesh registration, heatmap visualization, and quantitative metrics of surface distance and volumetric change. Experts also rated the concordance between automated assessments and clinical diagnoses. In the test set, condylar segmentation achieved a Dice coefficient of 0.98, and landmark prediction yielded a mean absolute error of 0.26 mm. The automated evaluation process was completed in 5.22 seconds, approximately 150 times faster than manual assessments. The method accurately quantified condylar volume changes, ranging from 2.74% to 50.67% across patients. Expert ratings for all test cases averaged 9.62. This study introduced a consistent, accurate, and fully automated approach for condylar remodeling evaluation. The well-defined anatomical landmarks guided precise segmentation and registration, while deep learning supported an end-to-end automated workflow. The test results demonstrated its broad clinical applicability across various degrees of condylar remodeling and high concordance with expert assessments. By integrating anatomical landmarks and deep learning, the proposed method improves efficiency by 150 times without compromising accuracy, thereby facilitating an efficient and accurate assessment of orthognathic prognosis. The personalized 3D condylar remodeling models aid in visualizing sequelae, such as joint pain or skeletal relapse, and guide individualized management of TMJ disorders.

Residual self-attention vision transformer for detecting acquired vitelliform lesions and age-related macular drusen.

Powroznik P, Skublewska-Paszkowska M, Nowomiejska K, Gajda-Deryło B, Brinkmann M, Concilio M, Toro MD, Rejdak R

pubmed logopapersMay 16 2025
Retinal diseases recognition is still a challenging task. Many deep learning classification methods and their modifications have been developed for medical imaging. Recently, Vision Transformers (ViT) have been applied for classification of retinal diseases with great success. Therefore, in this study a novel method was proposed, the Residual Self-Attention Vision Transformer (RS-A ViT), for automatic detection of acquired vitelliform lesions (AVL), macular drusen as well as distinguishing them from healthy cases. The Residual Self-Attention module instead of Self-Attention was applied in order to improve model's performance. The new tool outperforms the classical deep learning methods, like EfficientNet, InceptionV3, ResNet50 and VGG16. The RS-A ViT method also exceeds the ViT algorithm, reaching 96.62%. For the purpose of this research a new dataset was created that combines AVL data gathered from two research centers and drusen as well as normal cases from the OCT dataset. The augmentation methods were applied in order to enlarge the samples. The Grad-CAM interpretability method indicated that this model analyses the appropriate areas in optical coherence tomography images in order to detect retinal diseases. The results proved that the presented RS-A ViT model has a great potential in classification retinal disorders with high accuracy and thus may be applied as a supportive tool for ophthalmologists.

How early can we detect diabetic retinopathy? A narrative review of imaging tools for structural assessment of the retina.

Vaughan M, Denmead P, Tay N, Rajendram R, Michaelides M, Patterson E

pubmed logopapersMay 16 2025
Despite current screening models, enhanced imaging modalities, and treatment regimens, diabetic retinopathy (DR) remains one of the leading causes of vision loss in working age adults. DR can result in irreversible structural and functional retinal damage, leading to visual impairment and reduced quality of life. Given potentially irreversible photoreceptor damage, diagnosis and treatment at the earliest stages will provide the best opportunity to avoid visual disturbances or retinopathy progression. We will review herein the current structural imaging methods used for DR assessment and their capability of detecting DR in the first stages of disease. Imaging tools, such as fundus photography, optical coherence tomography, fundus fluorescein angiography, optical coherence tomography angiography and adaptive optics-assisted imaging will be reviewed. Finally, we describe the future of DR screening programmes and the introduction of artificial intelligence as an innovative approach to detecting subtle changes in the diabetic retina. CLINICAL TRIAL REGISTRATION NUMBER: N/A.

UGoDIT: Unsupervised Group Deep Image Prior Via Transferable Weights

Shijun Liang, Ismail R. Alkhouri, Siddhant Gautam, Qing Qu, Saiprasad Ravishankar

arxiv logopreprintMay 16 2025
Recent advances in data-centric deep generative models have led to significant progress in solving inverse imaging problems. However, these models (e.g., diffusion models (DMs)) typically require large amounts of fully sampled (clean) training data, which is often impractical in medical and scientific settings such as dynamic imaging. On the other hand, training-data-free approaches like the Deep Image Prior (DIP) do not require clean ground-truth images but suffer from noise overfitting and can be computationally expensive as the network parameters need to be optimized for each measurement set independently. Moreover, DIP-based methods often overlook the potential of learning a prior using a small number of sub-sampled measurements (or degraded images) available during training. In this paper, we propose UGoDIT, an Unsupervised Group DIP via Transferable weights, designed for the low-data regime where only a very small number, M, of sub-sampled measurement vectors are available during training. Our method learns a set of transferable weights by optimizing a shared encoder and M disentangled decoders. At test time, we reconstruct the unseen degraded image using a DIP network, where part of the parameters are fixed to the learned weights, while the remaining are optimized to enforce measurement consistency. We evaluate UGoDIT on both medical (multi-coil MRI) and natural (super resolution and non-linear deblurring) image recovery tasks under various settings. Compared to recent standalone DIP methods, UGoDIT provides accelerated convergence and notable improvement in reconstruction quality. Furthermore, our method achieves performance competitive with SOTA DM-based and supervised approaches, despite not requiring large amounts of clean training data.

Diff-Unfolding: A Model-Based Score Learning Framework for Inverse Problems

Yuanhao Wang, Shirin Shoushtari, Ulugbek S. Kamilov

arxiv logopreprintMay 16 2025
Diffusion models are extensively used for modeling image priors for inverse problems. We introduce \emph{Diff-Unfolding}, a principled framework for learning posterior score functions of \emph{conditional diffusion models} by explicitly incorporating the physical measurement operator into a modular network architecture. Diff-Unfolding formulates posterior score learning as the training of an unrolled optimization scheme, where the measurement model is decoupled from the learned image prior. This design allows our method to generalize across inverse problems at inference time by simply replacing the forward operator without retraining. We theoretically justify our unrolling approach by showing that the posterior score can be derived from a composite model-based optimization formulation. Extensive experiments on image restoration and accelerated MRI show that Diff-Unfolding achieves state-of-the-art performance, improving PSNR by up to 2 dB and reducing LPIPS by $22.7\%$, while being both compact (47M parameters) and efficient (0.72 seconds per $256 \times 256$ image). An optimized C++/LibTorch implementation further reduces inference time to 0.63 seconds, underscoring the practicality of our approach.

Escarcitys: A framework for enhancing medical image classification performance in scarcity of trainable samples scenarios.

Wang T, Dai Q, Xiong W

pubmed logopapersMay 16 2025
In the field of healthcare, the acquisition and annotation of medical images present significant challenges, resulting in a scarcity of trainable samples. This data limitation hinders the performance of deep learning models, creating bottlenecks in clinical applications. To address this issue, we construct a framework (EScarcityS) aimed at enhancing the success rate of disease diagnosis in scarcity of trainable medical image scenarios. Firstly, considering that Transformer-based deep learning networks rely on a large amount of trainable data, this study takes into account the unique characteristics of pathological regions. By extracting the feature representations of all particles in medical images at different granularities, a multi-granularity Transformer network (MGVit) is designed. This network leverages additional prior knowledge to assist the Transformer network during training, thereby reducing the data requirement to some extent. Next, the importance maps of particles at different granularities, generated by MGVit, are fused to construct disease probability maps corresponding to the images. Based on these maps, a disease probability map-guided diffusion generation model is designed to generate more realistic and interpretable synthetic data. Subsequently, authentic and synthetical data are mixed and used to retrain MGVit, aiming to enhance the accuracy of medical image classification in scarcity of trainable medical image scenarios. Finally, we conducted detailed experiments on four real medical image datasets to validate the effectiveness of EScarcityS and its specific modules.

Deep learning model based on ultrasound images predicts BRAF V600E mutation in papillary thyroid carcinoma.

Yu Y, Zhao C, Guo R, Zhang Y, Li X, Liu N, Lu Y, Han X, Tang X, Mao R, Peng C, Yu J, Zhou J

pubmed logopapersMay 16 2025
BRAF V600E mutation status detection facilitates prognosis prediction in papillary thyroid carcinoma (PTC). We developed a deep-learning model to determine the BRAF V600E status in PTC. PTC from three centers were collected as the training set (1341 patients), validation set (148 patients), and external test set (135 patients). After testing the performance of the ResNeSt-50, Vision Transformer, and Swin Transformer V2 (SwinT) models, SwinT was chosen as the optimal backbone. An integrated BrafSwinT model was developed by combining the backbone with a radiomics feature branch and a clinical parameter branch. BrafSwinT demonstrated an AUC of 0.869 in the external test set, outperforming the original SwinT, Vision Transformer, and ResNeSt-50 models (AUC: 0.782-0.824; <i>p</i> value: 0.017-0.041). BrafSwinT showed promising results in determining BRAF V600E mutation status in PTC based on routinely acquired ultrasound images and basic clinical information, thus facilitating risk stratification.
Page 34 of 42411 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.