Escarcitys: A framework for enhancing medical image classification performance in scarcity of trainable samples scenarios.

Authors

Wang T,Dai Q,Xiong W

Affiliations (3)

  • College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, 211106, China.
  • College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, 211106, China. Electronic address: [email protected].
  • College of Computer Science, China University of Geosciences, Wuhan, 430078, China.

Abstract

In the field of healthcare, the acquisition and annotation of medical images present significant challenges, resulting in a scarcity of trainable samples. This data limitation hinders the performance of deep learning models, creating bottlenecks in clinical applications. To address this issue, we construct a framework (EScarcityS) aimed at enhancing the success rate of disease diagnosis in scarcity of trainable medical image scenarios. Firstly, considering that Transformer-based deep learning networks rely on a large amount of trainable data, this study takes into account the unique characteristics of pathological regions. By extracting the feature representations of all particles in medical images at different granularities, a multi-granularity Transformer network (MGVit) is designed. This network leverages additional prior knowledge to assist the Transformer network during training, thereby reducing the data requirement to some extent. Next, the importance maps of particles at different granularities, generated by MGVit, are fused to construct disease probability maps corresponding to the images. Based on these maps, a disease probability map-guided diffusion generation model is designed to generate more realistic and interpretable synthetic data. Subsequently, authentic and synthetical data are mixed and used to retrain MGVit, aiming to enhance the accuracy of medical image classification in scarcity of trainable medical image scenarios. Finally, we conducted detailed experiments on four real medical image datasets to validate the effectiveness of EScarcityS and its specific modules.

Topics

Journal Article
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.