Sort by:
Page 32 of 1331328 results

Advanced liver fibrosis detection using a two-stage deep learning approach on standard T2-weighted MRI.

Gupta P, Singh S, Gulati A, Dutta N, Aggarwal Y, Kalra N, Premkumar M, Taneja S, Verma N, De A, Duseja A

pubmed logopapersAug 19 2025
To develop and validate a deep learning model for automated detection of advanced liver fibrosis using standard T2-weighted MRI. We utilized two datasets: the public CirrMRI600 + dataset (n = 374) containing T2-weighted MRI scans from patients with cirrhosis (n = 318) and healthy subjects (n = 56), and an in-house dataset of chronic liver disease patients (n = 187). A two-stage deep learning pipeline was developed: first, an automated liver segmentation model using nnU-Net architecture trained on CirrMRI600 + and then applied to segment livers in our in-house dataset; second, a Masked Attention ResNet classification model. For classification model training, patients with liver stiffness measurement (LSM) > 12 kPa were classified as advanced fibrosis (n = 104). In contrast, healthy subjects from CirrMRI600 + and patients with LSM ≤ 12 kPa were classified as non-advanced fibrosis (n = 116). Model validation was exclusively performed on a separate test set of 23 patients with histopathological confirmation of the degree of fibrosis (METAVIR ≥ F3 indicating advanced fibrosis). We additionally compared our two-stage approach with direct classification without segmentation, and evaluated alternative architectures including DenseNet121 and SwinTransformer. The liver segmentation model performed excellently on the test set (mean Dice score: 0.960 ± 0.009; IoU: 0.923 ± 0.016). On the pathologically confirmed independent test set (n = 23), our two-stage model achieved strong diagnostic performance (sensitivity: 0.778, specificity: 0.800, AUC: 0.811, accuracy: 0.783), significantly outperforming direct classification without segmentation (AUC: 0.743). Classification performance was highly dependent on segmentation quality, with cases having excellent segmentation (Score 1) showing higher accuracy (0.818) than those with poor segmentation (Score 3, accuracy: 0.625). Alternative architectures with masked attention showed comparable but slightly lower performance (DenseNet121: AUC 0.795; SwinTransformer: AUC 0.782). Our fully automated deep learning pipeline effectively detects advanced liver fibrosis using standard non-contrast T2-weighted MRI, potentially offering a non-invasive alternative to current diagnostic approaches. The segmentation-first approach provides significant performance gains over direct classification.

LGFFM: A Localized and Globalized Frequency Fusion Model for Ultrasound Image Segmentation.

Luo X, Wang Y, Ou-Yang L

pubmed logopapersAug 19 2025
Accurate segmentation of ultrasound images plays a critical role in disease screening and diagnosis. Recently, neural network-based methods have garnered significant attention for their potential in improving ultrasound image segmentation. However, these methods still face significant challenges, primarily due to inherent issues in ultrasound images, such as low resolution, speckle noise, and artifacts. Additionally, ultrasound image segmentation encompasses a wide range of scenarios, including organ segmentation (e.g., cardiac and fetal head) and lesion segmentation (e.g., breast cancer and thyroid nodules), making the task highly diverse and complex. Existing methods are often designed for specific segmentation scenarios, which limits their flexibility and ability to meet the diverse needs across various scenarios. To address these challenges, we propose a novel Localized and Globalized Frequency Fusion Model (LGFFM) for ultrasound image segmentation. Specifically, we first design a Parallel Bi-Encoder (PBE) architecture that integrates Local Feature Blocks (LFB) and Global Feature Blocks (GLB) to enhance feature extraction. Additionally, we introduce a Frequency Domain Mapping Module (FDMM) to capture texture information, particularly high-frequency details such as edges. Finally, a Multi-Domain Fusion (MDF) method is developed to effectively integrate features across different domains. We conduct extensive experiments on eight representative public ultrasound datasets across four different types. The results demonstrate that LGFFM outperforms current state-of-the-art methods in both segmentation accuracy and generalization performance.

UNICON: UNIfied CONtinual Learning for Medical Foundational Models

Mohammad Areeb Qazi, Munachiso S Nwadike, Ibrahim Almakky, Mohammad Yaqub, Numan Saeed

arxiv logopreprintAug 19 2025
Foundational models are trained on extensive datasets to capture the general trends of a domain. However, in medical imaging, the scarcity of data makes pre-training for every domain, modality, or task challenging. Continual learning offers a solution by fine-tuning a model sequentially on different domains or tasks, enabling it to integrate new knowledge without requiring large datasets for each training phase. In this paper, we propose UNIfied CONtinual Learning for Medical Foundational Models (UNICON), a framework that enables the seamless adaptation of foundation models to diverse domains, tasks, and modalities. Unlike conventional adaptation methods that treat these changes in isolation, UNICON provides a unified, perpetually expandable framework. Through careful integration, we show that foundation models can dynamically expand across imaging modalities, anatomical regions, and clinical objectives without catastrophic forgetting or task interference. Empirically, we validate our approach by adapting a chest CT foundation model initially trained for classification to a prognosis and segmentation task. Our results show improved performance across both additional tasks. Furthermore, we continually incorporated PET scans and achieved a 5\% improvement in Dice score compared to respective baselines. These findings establish that foundation models are not inherently constrained to their initial training scope but can evolve, paving the way toward generalist AI models for medical imaging.

MMIS-Net for Retinal Fluid Segmentation and Detection

Nchongmaje Ndipenocha, Alina Mirona, Kezhi Wanga, Yongmin Li

arxiv logopreprintAug 19 2025
Purpose: Deep learning methods have shown promising results in the segmentation, and detection of diseases in medical images. However, most methods are trained and tested on data from a single source, modality, organ, or disease type, overlooking the combined potential of other available annotated data. Numerous small annotated medical image datasets from various modalities, organs, and diseases are publicly available. In this work, we aim to leverage the synergistic potential of these datasets to improve performance on unseen data. Approach: To this end, we propose a novel algorithm called MMIS-Net (MultiModal Medical Image Segmentation Network), which features Similarity Fusion blocks that utilize supervision and pixel-wise similarity knowledge selection for feature map fusion. Additionally, to address inconsistent class definitions and label contradictions, we created a one-hot label space to handle classes absent in one dataset but annotated in another. MMIS-Net was trained on 10 datasets encompassing 19 organs across 2 modalities to build a single model. Results: The algorithm was evaluated on the RETOUCH grand challenge hidden test set, outperforming large foundation models for medical image segmentation and other state-of-the-art algorithms. We achieved the best mean Dice score of 0.83 and an absolute volume difference of 0.035 for the fluids segmentation task, as well as a perfect Area Under the Curve of 1 for the fluid detection task. Conclusion: The quantitative results highlight the effectiveness of our proposed model due to the incorporation of Similarity Fusion blocks into the network's backbone for supervision and similarity knowledge selection, and the use of a one-hot label space to address label class inconsistencies and contradictions.

Direct vascular territory segmentation on cerebral digital subtraction angiography

P. Matthijs van der Sluijs, Lotte Strong, Frank G. te Nijenhuis, Sandra Cornelissen, Pieter Jan van Doormaal, Geert Lycklama a Nijeholt, Wim van Zwam, Ad van Es, Diederik Dippel, Aad van der Lugt, Danny Ruijters, Ruisheng Su, Theo van Walsum

arxiv logopreprintAug 19 2025
X-ray digital subtraction angiography (DSA) is frequently used when evaluating minimally invasive medical interventions. DSA predominantly visualizes vessels, and soft tissue anatomy is less visible or invisible in DSA. Visualization of cerebral anatomy could aid physicians during treatment. This study aimed to develop and evaluate a deep learning model to predict vascular territories that are not explicitly visible in DSA imaging acquired during ischemic stroke treatment. We trained an nnUNet model with manually segmented intracranial carotid artery and middle cerebral artery vessel territories on minimal intensity projection DSA acquired during ischemic stroke treatment. We compared the model to a traditional atlas registration model using the Dice similarity coefficient (DSC) and average surface distance (ASD). Additionally, we qualitatively assessed the success rate in both models using an external test. The segmentation model was trained on 1224 acquisitions from 361 patients with ischemic stroke. The segmentation model had a significantly higher DSC (0.96 vs 0.82, p<0.001) and lower ASD compared to the atlas model (13.8 vs 47.3, p<0.001). The success rate of the segmentation model (85%) was higher compared to the atlas registration model (66%) in the external test set. A deep learning method for the segmentation of vascular territories without explicit borders on cerebral DSA demonstrated superior accuracy and quality compared to the traditional atlas-based method. This approach has the potential to be applied to other anatomical structures for enhanced visualization during X-ray guided medical procedures. The code is publicly available at https://github.com/RuishengSu/autoTICI.

SCRNet: Spatial-Channel Regulation Network for Medical Ultrasound Image Segmentation

Weixin Xu, Ziliang Wang

arxiv logopreprintAug 19 2025
Medical ultrasound image segmentation presents a formidable challenge in the realm of computer vision. Traditional approaches rely on Convolutional Neural Networks (CNNs) and Transformer-based methods to address the intricacies of medical image segmentation. Nevertheless, inherent limitations persist, as CNN-based methods tend to disregard long-range dependencies, while Transformer-based methods may overlook local contextual information. To address these deficiencies, we propose a novel Feature Aggregation Module (FAM) designed to process two input features from the preceding layer. These features are seamlessly directed into two branches of the Convolution and Cross-Attention Parallel Module (CCAPM) to endow them with different roles in each of the two branches to help establish a strong connection between the two input features. This strategy enables our module to focus concurrently on both long-range dependencies and local contextual information by judiciously merging convolution operations with cross-attention mechanisms. Moreover, by integrating FAM within our proposed Spatial-Channel Regulation Module (SCRM), the ability to discern salient regions and informative features warranting increased attention is enhanced. Furthermore, by incorporating the SCRM into the encoder block of the UNet architecture, we introduce a novel framework dubbed Spatial-Channel Regulation Network (SCRNet). The results of our extensive experiments demonstrate the superiority of SCRNet, which consistently achieves state-of-the-art (SOTA) performance compared to existing methods.

A Fully Transformer Based Multimodal Framework for Explainable Cancer Image Segmentation Using Radiology Reports

Enobong Adahada, Isabel Sassoon, Kate Hone, Yongmin Li

arxiv logopreprintAug 19 2025
We introduce Med-CTX, a fully transformer based multimodal framework for explainable breast cancer ultrasound segmentation. We integrate clinical radiology reports to boost both performance and interpretability. Med-CTX achieves exact lesion delineation by using a dual-branch visual encoder that combines ViT and Swin transformers, as well as uncertainty aware fusion. Clinical language structured with BI-RADS semantics is encoded by BioClinicalBERT and combined with visual features utilising cross-modal attention, allowing the model to provide clinically grounded, model generated explanations. Our methodology generates segmentation masks, uncertainty maps, and diagnostic rationales all at once, increasing confidence and transparency in computer assisted diagnosis. On the BUS-BRA dataset, Med-CTX achieves a Dice score of 99% and an IoU of 95%, beating existing baselines U-Net, ViT, and Swin. Clinical text plays a key role in segmentation accuracy and explanation quality, as evidenced by ablation studies that show a -5.4% decline in Dice score and -31% in CIDEr. Med-CTX achieves good multimodal alignment (CLIP score: 85%) and increased confi dence calibration (ECE: 3.2%), setting a new bar for trustworthy, multimodal medical architecture.

A fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry.

Chen S, Zhong L, Zhang Z, Zhang X

pubmed logopapersAug 19 2025
Aiming at the difficulty of knee MRI bone and cartilage subregion segmentation caused by numerous subregions and unclear subregion boundary, a fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry is proposed. Specifically, first, we use a transformer-based multilevel region and edge aggregation network to achieve precise segmentation of bone and cartilage tissue edges in knee MRI. Then, we designed a fibula detection module, which determines the medial and lateral of the knee by detecting the position of the fibula. Afterwards, a subregion segmentation module based on boundary information was designed, which divides bone and cartilage tissues into subregions by detecting the boundaries. In addition, in order to provide data support for the proposed model, fibula classification dataset and knee MRI bone and cartilage subregion dataset were established respectively. Testing on the fibula classification dataset we established, the proposed method achieved a detection accuracy of 1.000 in detecting the medial and lateral of the knee. On the knee MRI bone and cartilage subregion dataset we established, the proposed method attained an average dice score of 0.953 for bone subregions and 0.831 for cartilage subregions, which verifies the correctness of the proposed method.

Automated surgical planning with nnU-Net: delineation of the anatomy in hepatobiliary phase MRI

Karin A. Olthof, Matteo Fusagli, Bianca Güttner, Tiziano Natali, Bram Westerink, Stefanie Speidel, Theo J. M. Ruers, Koert F. D. Kuhlmann, Andrey Zhylka

arxiv logopreprintAug 19 2025
Background: The aim of this study was to develop and evaluate a deep learning-based automated segmentation method for hepatic anatomy (i.e., parenchyma, tumors, portal vein, hepatic vein and biliary tree) from the hepatobiliary phase of gadoxetic acid-enhanced MRI. This method should ease the clinical workflow of preoperative planning. Methods: Manual segmentation was performed on hepatobiliary phase MRI scans from 90 consecutive patients who underwent liver surgery between January 2020 and October 2023. A deep learning network (nnU-Net v1) was trained on 72 patients with an extra focus on thin structures and topography preservation. Performance was evaluated on an 18-patient test set by comparing automated and manual segmentations using Dice similarity coefficient (DSC). Following clinical integration, 10 segmentations (assessment dataset) were generated using the network and manually refined for clinical use to quantify required adjustments using DSC. Results: In the test set, DSCs were 0.97+/-0.01 for liver parenchyma, 0.80+/-0.04 for hepatic vein, 0.79+/-0.07 for biliary tree, 0.77+/-0.17 for tumors, and 0.74+/-0.06 for portal vein. Average tumor detection rate was 76.6+/-24.1%, with a median of one false-positive per patient. The assessment dataset showed minor adjustments were required for clinical use of the 3D models, with high DSCs for parenchyma (1.00+/-0.00), portal vein (0.98+/-0.01) and hepatic vein (0.95+/-0.07). Tumor segmentation exhibited greater variability (DSC 0.80+/-0.27). During prospective clinical use, the model detected three additional tumors initially missed by radiologists. Conclusions: The proposed nnU-Net-based segmentation method enables accurate and automated delineation of hepatic anatomy. This enables 3D planning to be applied efficiently as a standard-of-care for every patient undergoing liver surgery.

Deep Learning-Enhanced Opportunistic Osteoporosis Screening in 100 kV Low-Voltage Chest CT: A Novel Way Toward Bone Mineral Density Measurement and Radiation Dose Reduction.

Li Y, Ye K, Liu S, Zhang Y, Jin D, Jiang C, Ni M, Zhang M, Qian Z, Wu W, Pan X, Yuan H

pubmed logopapersAug 19 2025
To explore the feasibility and accuracy of a deep learning (DL) method for fully automated vertebral body (VB) segmentation, region of interest (ROI) extraction, and bone mineral density (BMD) calculation using 100kV low-voltage chest CT performed for lung cancer screening across various scanners from different manufacturers and hospitals. This study included 1167 patients who underwent 100 kV low-voltage chest and 120 kV lumbar CT from October 2022 to August 2024. Patients were divided into a training set (495 patients), a validation set (169 patients), and three test sets (245, 128, and 130 patients). The DL framework comprised four convolutional neural networks (CNNs): 3D VB-Net and SCN for automated VB segmentation and ROI extraction, and DenseNet and ResNet for BMD calculation of target VBs (T12-L2). The BMD values of 120 kV QCT were identified as reference data. Linear regression and BlandAltman analyses were used to compare the BMD values between 120 kV QCT and 100 kV CNNs and 100 kV QCT. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of 100 kV CNNs and 100 kV QCT for osteoporosis and low BMD from normal BMD. For three test sets, linear regression and BlandAltman analyses revealed a stronger correlation (R<sup>2</sup> = 0.970-0.994 and 0.968-0.986, P < .001) and better agreement (mean error, -2.24 to 1.52 and 2.72 to 3.06 mg/cm<sup>3</sup>) for the BMD between the 120 kV QCT and 100 kV CNNs than between the 120 kV and 100 kV QCT. The areas under the curve of the 100 kV CNNs and 100 kV QCT were 1.000 and 0.999-1.000, and 1.000 and 1.000 for detecting osteoporosis and low BMD from normal BMD, respectively. The DL method achieved high accuracy for fully automated osteoporosis screening in 100 kV low-voltage chest CT scans obtained for lung cancer screening and performed well on various scanners from different manufacturers and hospitals.
Page 32 of 1331328 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.