Sort by:
Page 31 of 1301294 results

Identifying threshold of CT-defined muscle loss after radiotherapy for survival in oral cavity cancer using machine learning.

Lee J, Lin JB, Lin WC, Jan YT, Leu YS, Chen YJ, Wu KP

pubmed logopapersJul 1 2025
Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity squamous cell carcinoma (OCSCC). However, the threshold of muscle loss remains unclear. This study aimed to utilize explainable artificial intelligence to identify the threshold of muscle loss associated with survival in OCSCC. We enrolled 1087 patients with OCSCC treated with surgery and adjuvant radiotherapy at two tertiary centers (660 in the derivation cohort and 427 in the external validation cohort). Skeletal muscle index (SMI) was measured using pre- and post-radiotherapy computed tomography (CT) at the C3 vertebral level. Random forest (RF), eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost) models were developed to predict all-cause mortality, and their performances were evaluated using the area under the curve (AUC). Muscle loss threshold was identified using the SHapley Additive exPlanations (SHAP) method and validated using Cox regression analysis. In the external validation cohort, the RF, XGBoost, and CatBoost models achieved favorable performance in predicting all-cause mortality (AUC: 0.898, 0.859, and 0.842). The SHAP method demonstrated that SMI change after radiotherapy was the most important feature for predicting all-cause mortality and consistently identified SMI loss ≥ 4.2% as the threshold in all three models. In multivariable analysis, SMI loss ≥ 4.2% was independently associated with increased all-cause mortality risk in both cohorts (derivation cohort: hazard ratio: 6.66, p < 0.001; external validation cohort: hazard ratio: 8.46, p < 0.001). This study can assist clinicians in identifying patients with considerable muscle loss after treatment and guide interventions to improve muscle mass. Question Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity cancer; however, the threshold of muscle loss remains unclear. Findings Explainable artificial intelligence identified muscle loss ≥ 4.2% as the threshold of increased all-cause mortality risk in both derivation and external validation cohorts. Clinical Relevance Muscle loss ≥ 4.2% may be the optimal threshold for survival in patients who receive adjuvant radiotherapy for oral cavity cancer. This threshold can guide clinicians in improving muscle mass after radiotherapy.

Malignancy risk stratification for pulmonary nodules: comparing a deep learning approach to multiparametric statistical models in different disease groups.

Piskorski L, Debic M, von Stackelberg O, Schlamp K, Welzel L, Weinheimer O, Peters AA, Wielpütz MO, Frauenfelder T, Kauczor HU, Heußel CP, Kroschke J

pubmed logopapersJul 1 2025
Incidentally detected pulmonary nodules present a challenge in clinical routine with demand for reliable support systems for risk classification. We aimed to evaluate the performance of the lung-cancer-prediction-convolutional-neural-network (LCP-CNN), a deep learning-based approach, in comparison to multiparametric statistical methods (Brock model and Lung-RADS®) for risk classification of nodules in cohorts with different risk profiles and underlying pulmonary diseases. Retrospective analysis was conducted on non-contrast and contrast-enhanced CT scans containing pulmonary nodules measuring 5-30 mm. Ground truth was defined by histology or follow-up stability. The final analysis was performed on 297 patients with 422 eligible nodules, of which 105 nodules were malignant. Classification performance of the LCP-CNN, Brock model, and Lung-RADS® was evaluated in terms of diagnostic accuracy measurements including ROC-analysis for different subcohorts (total, screening, emphysema, and interstitial lung disease). LCP-CNN demonstrated superior performance compared to the Brock model in total and screening cohorts (AUC 0.92 (95% CI: 0.89-0.94) and 0.93 (95% CI: 0.89-0.96)). Superior sensitivity of LCP-CNN was demonstrated compared to the Brock model and Lung-RADS® in total, screening, and emphysema cohorts for a risk threshold of 5%. Superior sensitivity of LCP-CNN was also shown across all disease groups compared to the Brock model at a threshold of 65%, compared to Lung-RADS® sensitivity was better or equal. No significant differences in the performance of LCP-CNN were found between subcohorts. This study offers further evidence of the potential to integrate deep learning-based decision support systems into pulmonary nodule classification workflows, irrespective of the individual patient risk profile and underlying pulmonary disease. Question Is a deep-learning approach (LCP-CNN) superior to multiparametric models (Brock model, Lung-RADS®) in classifying pulmonary nodule risk across varied patient profiles? Findings LCP-CNN shows superior performance in risk classification of pulmonary nodules compared to multiparametric models with no significant impact on risk profiles and structural pulmonary diseases. Clinical relevance LCP-CNN offers efficiency and accuracy, addressing limitations of traditional models, such as variations in manual measurements or lack of patient data, while producing robust results. Such approaches may therefore impact clinical work by complementing or even replacing current approaches.

Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.

Famularo S, Maino C, Milana F, Ardito F, Rompianesi G, Ciulli C, Conci S, Gallotti A, La Barba G, Romano M, De Angelis M, Patauner S, Penzo C, De Rose AM, Marescaux J, Diana M, Ippolito D, Frena A, Boccia L, Zanus G, Ercolani G, Maestri M, Grazi GL, Ruzzenente A, Romano F, Troisi RI, Giuliante F, Donadon M, Torzilli G

pubmed logopapersJul 1 2025
No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms. Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM). Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %). The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.

Machine learning-based brain magnetic resonance imaging radiomics for identifying rapid eye movement sleep behavior disorder in Parkinson's disease patients.

Lian Y, Xu Y, Hu L, Wei Y, Wang Z

pubmed logopapersJul 1 2025
Traditional clinical diagnostic methods of rapid eye movement sleep behavior disorder (RBD) have certain limitations, especially in the early stages. This study aims to develop and validate an magnetic resonance imaging (MRI) radiomics-based machine learning classifier to accurately detect RBD patients with Parkinson's disease (PD). Data from 183 subjects, including 63 PD patients with RBD, sourced from the PPMI database were utilized in this study. The data were randomly divided into training (70%) and testing (30%) sets. Quantitative radiomic features of white matter, gray matter, and cerebrospinal fluid were extracted from whole-brain structural MRI images. Feature reduction was performed on the training set data to construct radiomics signatures. Additionally, multi-factor logistic regression analysis identified clinical predictors associated with PD-RBD, and these clinical features were integrated with the radiomics signatures to develop predictive models using various machine learning algorithms. The model exhibiting the best performance was selected, and receiver operating characteristic (ROC) curves were used to evaluate its performance in both the training and testing sets. Furthermore, based on the optimal cut-off value of the model, subjects were categorized into low- and high-risk groups, and differences in the actual number of RBD patients between the two sets were compared to assess the clinical effectiveness of the model. The radiomics signatures achieved areas under the curve (AUC) of 0.754 and 0.707 in the training and testing sets, respectively. Multi-factor logistic regression analysis revealed that postural instability was an independent predictor of PD-RBD. The random forest model, which integrated radiomics signatures with postural instability, demonstrated superior performance in predicting PD-RBD. Specifically, its AUCs in the training and testing sets were 0.917 and 0.882, with sensitivities of 0.933 and 0.889, and specificities of 0.786 and 0.722, respectively. Based on the optimal cut-off value of 0.3772, significant differences in the actual number of PD-RBD patients were observed between low-risk and high-risk groups in both the training and testing sets (P < 0.05). MRI-based radiomic signatures have the potential to serve as biomarkers for PD-RBD. The random forest model, which integrates radiomic signatures with postural instability, and shows improved performance in identifying PD-RBD. This approach offers valuable insights for prognostic evaluation and preventive treatment strategies.

Longitudinal twin growth discordance patterns and adverse perinatal outcomes.

Prasad S, Ayhan I, Mohammed D, Kalafat E, Khalil A

pubmed logopapersJul 1 2025
Growth discordance in twin pregnancies is associated with increased perinatal morbidity and mortality, yet the patterns of discordance progression and the utility of Doppler assessments remain underinvestigated. The objective of this study was to conduct a longitudinal assessment of intertwin growth and Doppler discordance to identify possible distinct patterns and to investigate the predictive value of longitudinal discordance patterns for adverse perinatal outcomes in twin pregnancies. This retrospective cohort study included twin pregnancies followed and delivered at a tertiary hospital in London (United Kingdom) between 2010 and 2023. We included pregnancies with at least 3 ultrasound assessments after 18 weeks and delivery beyond 34 weeks' gestation. Monoamniotic twin pregnancies, pregnancies with twin-to-twin transfusion syndrome, genetic or structural abnormalities, or incomplete data were excluded. Data on chorionicity, biometry, Doppler indices, maternal characteristics and obstetrics, and neonatal outcomes were extracted from electronic records. Doppler assessment included velocimetry of the umbilical artery, middle cerebral artery, and cerebroplacental ratio. Intertwin growth discordance was calculated for each scan. The primary outcome was a composite of perinatal mortality and neonatal morbidity. Statistical analysis involved multilevel mixed effects regression models and unsupervised machine learning algorithms, specifically k-means clustering, to identify distinct patterns of intertwin discordance and their predictive value. Predictive models were compared using the area under the receiver operating characteristic curve, calibration intercept, and slope, validated with repeated cross-validation. Analyses were performed using R, with significance set at P<.05. Data from 823 twin pregnancies (647 dichorionic, 176 monochorionic) were analyzed. Five distinct patterns of intertwin growth discordance were identified using an unsupervised learning algorithm that clustered twin pairs based on the progression and patterns of discordance over gestation: low-stable (n=204, 24.8%), mild-decreasing (n=171, 20.8%), low-increasing (n=173, 21.0%), mild-increasing (n=189, 23.0%), and high-stable (n=86, 10.4%). In the high-stable cluster, the rates of perinatal morbidity (46.5%, 40/86) and mortality (9.3%, 8/86) were significantly higher compared to the low-stable (reference) cluster (P<.001). High-stable growth pattern was also associated with a significantly higher risk of composite adverse perinatal outcomes (odds ratio: 70.19, 95% confidence interval: 24.18-299.03, P<.001; adjusted odds ratio: 76.44, 95% confidence interval: 25.39-333.02, P<.001). The model integrating discordance pattern with cerebroplacental ratio discordance at the last ultrasound before delivery demonstrated superior predictive accuracy, evidenced by the highest area under the receiver operating characteristic curve of 0.802 (95% confidence interval: 0.712-0.892, P<.001), compared to only discordance patterns (area under the receiver operating characteristic curve: 0.785, 95% confidence interval: 0.697-0.873), intertwin weight discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.677, 95% confidence interval: 0.545-0.809), combination of single measurements of estimated fetal weight and cardiopulmonary resuscitation discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.702, 95% confidence interval: 0.586-0.818), and single measurement of cardiopulmonary resuscitation discordance only at the last ultrasound (area under the receiver operating characteristic curve: 0.633, 95% confidence interval: 0.515-0.751). Using an unsupervised machine learning algorithm, we identified 5 distinct trajectories of intertwin fetal growth discordance. Consistent high discordance is associated with increased rates of adverse perinatal outcomes, with a dose-response relationship. Moreover, a predictive model integrating discordance trajectory and cardiopulmonary resuscitation discordance at the last visit demonstrated superior predictive accuracy for the prediction of composite adverse perinatal outcomes, compared to either of these measurements alone or a single value of estimated fetal weight discordance at the last ultrasound prior to delivery.

Multi-site, multi-vendor development and validation of a deep learning model for liver stiffness prediction using abdominal biparametric MRI.

Ali R, Li H, Zhang H, Pan W, Reeder SB, Harris D, Masch W, Aslam A, Shanbhogue K, Bernieh A, Ranganathan S, Parikh N, Dillman JR, He L

pubmed logopapersJul 1 2025
Chronic liver disease (CLD) is a substantial cause of morbidity and mortality worldwide. Liver stiffness, as measured by MR elastography (MRE), is well-accepted as a surrogate marker of liver fibrosis. To develop and validate deep learning (DL) models for predicting MRE-derived liver stiffness using routine clinical non-contrast abdominal T1-weighted (T1w) and T2-weighted (T2w) data from multiple institutions/system manufacturers in pediatric and adult patients. We identified pediatric and adult patients with known or suspected CLD from four institutions, who underwent clinical MRI with MRE from 2011 to 2022. We used T1w and T2w data to train DL models for liver stiffness classification. Patients were categorized into two groups for binary classification using liver stiffness thresholds (≥ 2.5 kPa, ≥ 3.0 kPa, ≥ 3.5 kPa, ≥ 4 kPa, or ≥ 5 kPa), reflecting various degrees of liver stiffening. We identified 4695 MRI examinations from 4295 patients (mean ± SD age, 47.6 ± 18.7 years; 428 (10.0%) pediatric; 2159 males [50.2%]). With a primary liver stiffness threshold of 3.0 kPa, our model correctly classified patients into no/minimal (< 3.0 kPa) vs moderate/severe (≥ 3.0 kPa) liver stiffness with AUROCs of 0.83 (95% CI: 0.82, 0.84) in our internal multi-site cross-validation (CV) experiment, 0.82 (95% CI: 0.80, 0.84) in our temporal hold-out validation experiment, and 0.79 (95% CI: 0.75, 0.81) in our external leave-one-site-out CV experiment. The developed model is publicly available ( https://github.com/almahdir1/Multi-channel-DeepLiverNet2.0.git ). Our DL models exhibited reasonable diagnostic performance for categorical classification of liver stiffness on a large diverse dataset using T1w and T2w MRI data. Question Can DL models accurately predict liver stiffness using routine clinical biparametric MRI in pediatric and adult patients with CLD? Findings DeepLiverNet2.0 used biparametric MRI data to classify liver stiffness, achieving AUROCs of 0.83, 0.82, and 0.79 for multi-site CV, hold-out validation, and external CV. Clinical relevance Our DeepLiverNet2.0 AI model can categorically classify the severity of liver stiffening using anatomic biparametric MR images in children and young adults. Model refinements and incorporation of clinical features may decrease the need for MRE.

A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer.

Zhao T, He J, Zhang L, Li H, Duan Q

pubmed logopapersJul 1 2025
To construct a predictive model using deep-learning radiomics and clinical risk factors for assessing the preoperative histopathological grade of bladder cancer according to computed tomography (CT) images. A retrospective analysis was conducted involving 201 bladder cancer patients with definite pathological grading results after surgical excision at the organization between January 2019 and June 2023. The cohort was classified into a test set of 81 cases and a training set of 120 cases. Hand-crafted radiomics (HCR) and features derived from deep-learning (DL) were obtained from computed tomography (CT) images. The research builds a prediction model using 12 machine-learning classifiers, which integrate HCR, DL features, and clinical data. Model performance was estimated utilizing decision-curve analysis (DCA), the area under the curve (AUC), and calibration curves. Among the classifiers tested, the logistic regression model that combined DL and HCR characteristics demonstrated the finest performance. The AUC values were 0.912 (training set) and 0.777 (test set). The AUC values of clinical model achieved 0.850 (training set) and 0.804 (test set). The AUC values of the combined model were 0.933 (training set) and 0.824 (test set), outperforming both the clinical and HCR-only models. The CT-based combined model demonstrated considerable diagnostic capability in differentiating high-grade from low-grade bladder cancer, serving as a valuable noninvasive instrument for preoperative pathological evaluation.

Synthetic Versus Classic Data Augmentation: Impacts on Breast Ultrasound Image Classification.

Medghalchi Y, Zakariaei N, Rahmim A, Hacihaliloglu I

pubmed logopapersJul 1 2025
The effectiveness of deep neural networks (DNNs) for the ultrasound image analysis depends on the availability and accuracy of the training data. However, the large-scale data collection and annotation, particularly in medical fields, is often costly and time consuming, especially when healthcare professionals are already burdened with their clinical responsibilities. Ensuring that a model remains robust across different imaging conditions-such as variations in ultrasound devices and manual transducer operation-is crucial in the ultrasound image analysis. The data augmentation is a widely used solution, as it increases both the size and diversity of datasets, thereby enhancing the generalization performance of DNNs. With the advent of generative networks such as generative adversarial networks (GANs) and diffusion-based models, the synthetic data generation has emerged as a promising augmentation technique. However, comprehensive studies comparing classic and generative method-based augmentation methods are lacking, particularly in ultrasound-based breast cancer imaging, where variability in breast density, tumor morphology, and operator skill poses significant challenges. This study aims to compare the effectiveness of classic and generative network-based data augmentation techniques in improving the performance and robustness of breast ultrasound image classification models. Specifically, we seek to determine whether the computational intensity of generative networks is justified in data augmentation. This analysis will provide valuable insights into the role and benefits of each technique in enhancing the diagnostic accuracy of DNN for breast cancer diagnosis. The code for this work will be available at: ht.tps://github.com/yasamin-med/SCDA.git.

Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Lamba K, Rani S, Shabaz M

pubmed logopapersJul 1 2025
Brain tumor causes life-threatening consequences due to which its timely detection and accurate classification are critical for determining appropriate treatment plans while focusing on the improved patient outcomes. However, conventional approaches of brain tumor diagnosis, such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans, are often labor-intensive, prone to human error, and completely reliable on expertise of radiologists.Thus, the integration of advanced techniques such as Machine Learning (ML) and Deep Learning (DL) has brought revolution in the healthcare sector due to their supporting features or properties having ability to analyze medical images in recent years, demonstrating great potential for achieving accurate and improved outcomes but also resulted in a few drawbacks due to their black-box nature. As understanding reasoning behind their predictions is still a great challenge for the healthcare professionals and raised a great concern about their trustworthiness, interpretability and transparency in clinical settings. Thus, an advanced algorithm of explainable artificial intelligence (XAI) has been synergized with hybrid model comprising of DenseNet201 network for extracting the most important features based on the input Magnetic resonance imaging (MRI) data following supervised algorithm, support vector machine (SVM) to distinguish distinct types of brain scans. To overcome this, an explainable hybrid framework has been proposed that integrates DenseNet201 for deep feature extraction with a Support Vector Machine (SVM) classifier for robust binary classification. A region-adaptive preprocessing pipeline is used to enhance tumor visibility and feature clarity. To address the need for interpretability, multiple XAI techniques-Grad-CAM, Integrated Gradients (IG), and Layer-wise Relevance Propagation (LRP) have been incorporated. Our comparative evaluation shows that LRP achieves the highest performance across all explainability metrics, with 98.64% accuracy, 0.74 F1-score, and 0.78 IoU. The proposed model provides transparent and highly accurate diagnostic predictions, offering a reliable clinical decision support tool. It achieves 0.9801 accuracy, 0.9223 sensitivity, 0.9909 specificity, 0.9154 precision, and 0.9360 F1-score, demonstrating strong potential for real-world brain tumor diagnosis and personalized treatment strategies.

Prediction of axillary lymph node metastasis in triple negative breast cancer using MRI radiomics and clinical features.

Shen Y, Huang R, Zhang Y, Zhu J, Li Y

pubmed logopapersJul 1 2025
To develop and validate a machine learning-based prediction model to predict axillary lymph node (ALN) metastasis in triple negative breast cancer (TNBC) patients using magnetic resonance imaging (MRI) and clinical characteristics. This retrospective study included TNBC patients from the First Affiliated Hospital of Soochow University and Jiangsu Province Hospital (2016-2023). We analyzed clinical characteristics and radiomic features from T2-weighted MRI. Using LASSO regression for feature selection, we applied Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) to build prediction models. A total of 163 patients, with a median age of 53 years (range: 24-73), were divided into a training group (n = 115) and a validation group (n = 48). Among them, 54 (33.13%) had ALN metastasis, and 109 (66.87%) were non-metastasis. Nottingham grade (P = 0.005), tumor size (P = 0.016) were significant difference between non-metastasis cases and metastasis cases. In the validation set, the LR-based combined model achieved the highest AUC (0.828, 95%CI: 0.706-0.950) with excellent sensitivity (0.813) and accuracy (0.812). Although the RF-based model had the highest AUC in the training set and the highest specificity (0.906) in the validation set, its performance was less consistent compared to the LR model. MRI-T2WI radiomic features predict ALN metastasis in TNBC, with integration into clinical models enhancing preoperative predictions and personalizing management.
Page 31 of 1301294 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.