A computed tomography-based deep learning radiomics model for predicting the gender-age-physiology stage of patients with connective tissue disease-associated interstitial lung disease.
Long B, Li R, Wang R, Yin A, Zhuang Z, Jing Y, E L
Long B, Li R, Wang R, Yin A, Zhuang Z, Jing Y, E L
Zhu H, Huang J, Chen K, Ying X, Qian Y
Ji G, Luo W, Zhu Y, Chen B, Wang M, Jiang L, Yang M, Song W, Yao P, Zheng T, Yu H, Zhang R, Wang C, Ding R, Zhuo X, Chen F, Li J, Tang X, Xian J, Song T, Tang J, Feng M, Shao J, Li W
Puri S, Bagnall M, Erdelyi G
Edwin Raja S, Sutha J, Elamparithi P, Jaya Deepthi K, Lalitha SD
Snyder J, Blevins G, Smyth P, Wilman AH
Vierula JP, Merisaari H, Heikkinen J, Happonen T, Sirén A, Velhonoja J, Irjala H, Soukka T, Mattila K, Nyman M, Nurminen J, Hirvonen J
Kiso T, Okada Y, Kawata S, Shichiji K, Okumura E, Hatsumi N, Matsuura R, Kaminaga M, Kuwano H, Okumura E
Tehrani AKZ, Schoen S, Candel I, Gu Y, Guo P, Thomenius K, Pierce TT, Wang M, Tadross R, Washburn M, Rivaz H, Samir AE
Metsch JM, Hauschild AC
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.