Sort by:
Page 3 of 27270 results

Coronary CT angiography evaluation with artificial intelligence for individualized medical treatment of atherosclerosis: a Consensus Statement from the QCI Study Group.

Schulze K, Stantien AM, Williams MC, Vassiliou VS, Giannopoulos AA, Nieman K, Maurovich-Horvat P, Tarkin JM, Vliegenthart R, Weir-McCall J, Mohamed M, Föllmer B, Biavati F, Stahl AC, Knape J, Balogh H, Galea N, Išgum I, Arbab-Zadeh A, Alkadhi H, Manka R, Wood DA, Nicol ED, Nurmohamed NS, Martens FMAC, Dey D, Newby DE, Dewey M

pubmed logopapersAug 1 2025
Coronary CT angiography is widely implemented, with an estimated 2.2 million procedures in patients with stable chest pain every year in Europe alone. In parallel, artificial intelligence and machine learning are poised to transform coronary atherosclerotic plaque evaluation by improving reliability and speed. However, little is known about how to use coronary atherosclerosis imaging biomarkers to individualize recommendations for medical treatment. This Consensus Statement from the Quantitative Cardiovascular Imaging (QCI) Study Group outlines key recommendations derived from a three-step Delphi process that took place after the third international QCI Study Group meeting in September 2024. Experts from various fields of cardiovascular imaging agreed on the use of age-adjusted and gender-adjusted percentile curves, based on coronary plaque data from the DISCHARGE and SCOT-HEART trials. Two key issues were addressed: the need to harness the reliability and precision of artificial intelligence and machine learning tools and to tailor treatment on the basis of individualized plaque analysis. The QCI Study Group recommends that the presence of any atherosclerotic plaque should lead to a recommendation of pharmacological treatment, whereas the 70th percentile of total plaque volume warrants high-intensity treatment. The aim of these recommendations is to lay the groundwork for future trials and to unlock the potential of coronary CT angiography to improve patient outcomes globally.

BEA-CACE: branch-endpoint-aware double-DQN for coronary artery centerline extraction in CT angiography images.

Zhang Y, Luo G, Wang W, Cao S, Dong S, Yu D, Wang X, Wang K

pubmed logopapersAug 1 2025
In order to automate the centerline extraction of the coronary tree, three challenges must be addressed: tracking branches automatically, passing through plaques successfully, and detecting endpoints accurately. This study aims to develop a method to solve the three challenges. We propose a branch-endpoint-aware coronary centerline extraction framework. The framework consists of a deep reinforcement learning-based tracker and a 3D dilated CNN-based detector. The tracker is designed to predict the actions of an agent with the objective of tracking the centerline. The detector identifies bifurcation points and endpoints, assisting the tracker in tracking branches and terminating the tracking process automatically. The detector can also estimate the radius values of the coronary artery. The method achieves the state-of-the-art performance in both the centerline extraction and radius estimate. Furthermore, the method necessitates minimal user interaction to extract a coronary tree, a feature that surpasses other interactive methods. The method can track branches automatically, pass through plaques successfully and detect endpoints accurately. Compared with other interactive methods that require multiple seeds, our method only needs one seed to extract the entire coronary tree.

First comparison between artificial intelligence-guided coronary computed tomography angiography versus single-photon emission computed tomography testing for ischemia in clinical practice.

Cho GW, Sayed S, D'Costa Z, Karlsberg DW, Karlsberg RP

pubmed logopapersAug 1 2025
Noninvasive cardiac testing with coronary computed tomography angiography (CCTA) and single-photon emission computed tomography (SPECT) are becoming alternatives to invasive angiography for the evaluation of obstructive coronary artery disease. We aimed to evaluate whether a novel artificial intelligence (AI)-assisted CCTA program is comparable to SPECT imaging for ischemic testing. CCTA images were analyzed using an artificial intelligence convolutional neural network machine-learning-based model, atherosclerosis imaging-quantitative computed tomography (AI-QCT) ISCHEMIA . A total of 183 patients (75 females and 108 males, with an average age of 60.8 years ± 12.3 years) were selected. All patients underwent AI-QCT ISCHEMIA -augmented CCTA, with 60 undergoing concurrent SPECT and 16 having invasive coronary angiograms. Eight studies were excluded from analysis due to incomplete data or coronary anomalies.  A total of 175 patients (95%) had CCTA performed, deemed acceptable for AI-QCT ISCHEMIA interpretation. Compared to invasive angiography, AI-QCT ISCHEMIA -driven CCTA showed a sensitivity of 75% and specificity of 70% for predicting coronary ischemia, versus 70% and 53%, respectively for SPECT. The negative predictive value was high for female patients when using AI-QCT ISCHEMIA compared to SPECT (91% vs. 68%, P  = 0.042). Area under the receiver operating characteristic curves were similar between both modalities (0.81 for AI-CCTA, 0.75 for SPECT, P  = 0.526). When comparing both modalities, the correlation coefficient was r  = 0.71 ( P  < 0.04). AI-powered CCTA is a viable alternative to SPECT for detecting myocardial ischemia in patients with low- to intermediate-risk coronary artery disease, with significant positive and negative correlation in results. For patients who underwent confirmatory invasive angiography, the results of AI-CCTA and SPECT imaging were comparable. Future research focusing on prospective studies involving larger and more diverse patient populations is warranted to further investigate the benefits offered by AI-driven CCTA.

Segmentation of coronary calcifications with a domain knowledge-based lightweight 3D convolutional neural network.

Santos R, Castro R, Baeza R, Nunes F, Filipe VM, Renna F, Paredes H, Fontes-Carvalho R, Pedrosa J

pubmed logopapersAug 1 2025
Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method's performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential.

A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.

Xie H, Gan W, Ji W, Chen X, Alashi A, Thorn SL, Zhou B, Liu Q, Xia M, Guo X, Liu YH, An H, Kamilov US, Wang G, Sinusas AJ, Liu C

pubmed logopapersJul 30 2025
Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, limiting realistic applicability. This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning. Using both image and projection data, a consistency strategy is proposed to ensure that diffusion sampling at each step aligns with the low-dose/few-view projection measurements, the image data, and the scanner geometry, thus enabling generalization to different low-dose/few-view settings. Incorporating anatomical spatial information from CT and total variation constraint, we proposed a 2.5D conditional strategy to allow DiffSPECT-3D to observe 3D contextual information from the entire image volume, addressing the 3D memory/computational issues in diffusion model. We extensively evaluated the proposed method on 1,325 clinical <sup>99m</sup>Tc tetrofosmin stress/rest studies from 795 patients. Each study was reconstructed into 5 different low-count levels and 5 different projection few-view levels for model evaluations, ranging from 1% to 50% and from 1 view to 9 view, respectively. Validated against cardiac catheterization results and diagnostic review from nuclear cardiologists, the presented results show the potential to achieve low-dose and few-view SPECT imaging without compromising clinical performance. Additionally, DiffSPECT-3D could be directly applied to full-dose SPECT images to further improve image quality, especially in a low-dose stress-first cardiac SPECT imaging protocol.

Recovering Diagnostic Value: Super-Resolution-Aided Echocardiographic Classification in Resource-Constrained Imaging

Krishan Agyakari Raja Babu, Om Prabhu, Annu, Mohanasankar Sivaprakasam

arxiv logopreprintJul 30 2025
Automated cardiac interpretation in resource-constrained settings (RCS) is often hindered by poor-quality echocardiographic imaging, limiting the effectiveness of downstream diagnostic models. While super-resolution (SR) techniques have shown promise in enhancing magnetic resonance imaging (MRI) and computed tomography (CT) scans, their application to echocardiography-a widely accessible but noise-prone modality-remains underexplored. In this work, we investigate the potential of deep learning-based SR to improve classification accuracy on low-quality 2D echocardiograms. Using the publicly available CAMUS dataset, we stratify samples by image quality and evaluate two clinically relevant tasks of varying complexity: a relatively simple Two-Chamber vs. Four-Chamber (2CH vs. 4CH) view classification and a more complex End-Diastole vs. End-Systole (ED vs. ES) phase classification. We apply two widely used SR models-Super-Resolution Generative Adversarial Network (SRGAN) and Super-Resolution Residual Network (SRResNet), to enhance poor-quality images and observe significant gains in performance metric-particularly with SRResNet, which also offers computational efficiency. Our findings demonstrate that SR can effectively recover diagnostic value in degraded echo scans, making it a viable tool for AI-assisted care in RCS, achieving more with less.

Cardiac-CLIP: A Vision-Language Foundation Model for 3D Cardiac CT Images

Yutao Hu, Ying Zheng, Shumei Miao, Xiaolei Zhang, Jiahao Xia, Yaolei Qi, Yiyang Zhang, Yuting He, Qian Chen, Jing Ye, Hongyan Qiao, Xiuhua Hu, Lei Xu, Jiayin Zhang, Hui Liu, Minwen Zheng, Yining Wang, Daimin Zhang, Ji Zhang, Wenqi Shao, Yun Liu, Longjiang Zhang, Guanyu Yang

arxiv logopreprintJul 29 2025
Foundation models have demonstrated remarkable potential in medical domain. However, their application to complex cardiovascular diagnostics remains underexplored. In this paper, we present Cardiac-CLIP, a multi-modal foundation model designed for 3D cardiac CT images. Cardiac-CLIP is developed through a two-stage pre-training strategy. The first stage employs a 3D masked autoencoder (MAE) to perform self-supervised representation learning from large-scale unlabeled volumetric data, enabling the visual encoder to capture rich anatomical and contextual features. In the second stage, contrastive learning is introduced to align visual and textual representations, facilitating cross-modal understanding. To support the pre-training, we collect 16641 real clinical CT scans, supplemented by 114k publicly available data. Meanwhile, we standardize free-text radiology reports into unified templates and construct the pathology vectors according to diagnostic attributes, based on which the soft-label matrix is generated to supervise the contrastive learning process. On the other hand, to comprehensively evaluate the effectiveness of Cardiac-CLIP, we collect 6,722 real-clinical data from 12 independent institutions, along with the open-source data to construct the evaluation dataset. Specifically, Cardiac-CLIP is comprehensively evaluated across multiple tasks, including cardiovascular abnormality classification, information retrieval and clinical analysis. Experimental results demonstrate that Cardiac-CLIP achieves state-of-the-art performance across various downstream tasks in both internal and external data. Particularly, Cardiac-CLIP exhibits great effectiveness in supporting complex clinical tasks such as the prospective prediction of acute coronary syndrome, which is notoriously difficult in real-world scenarios.

Determining the scanning range of coronary computed tomography angiography based on deep learning.

Zhao YH, Fan YH, Wu XY, Qin T, Sun QT, Liang BH

pubmed logopapersJul 28 2025
Coronary computed tomography angiography (CCTA) is essential for diagnosing coronary artery disease as it provides detailed images of the heart's blood vessels to identify blockages or abnormalities. Traditionally, determining the computed tomography (CT) scanning range has relied on manual methods due to limited automation in this area. To develop and evaluate a novel deep learning approach to automate the determination of CCTA scan ranges using anteroposterior scout images. A retrospective analysis was conducted on chest CT data from 1388 patients at the Radiology Department of the First Affiliated Hospital of a university-affiliated hospital, collected between February 27 and March 27, 2024. A deep learning model was trained on anteroposterior scout images with annotations based on CCTA standards. The dataset was split into training (672 cases), validation (167 cases), and test (167 cases) sets to ensure robust model evaluation. The study demonstrated exceptional performance on the test set, achieving a mean average precision (mAP50) of 0.995 and mAP50-95 of 0.994 for determining CCTA scan ranges. This study demonstrates that: (1) Anteroposterior scout images can effectively estimate CCTA scan ranges; and (2) Estimates can be dynamically adjusted to meet the needs of various medical institutions.

Accelerating cardiac radial-MRI: Fully polar based technique using compressed sensing and deep learning.

Ghodrati V, Duan J, Ali F, Bedayat A, Prosper A, Bydder M

pubmed logopapersJul 26 2025
Fast radial-MRI approaches based on compressed sensing (CS) and deep learning (DL) often use non-uniform fast Fourier transform (NUFFT) as the forward imaging operator, which might introduce interpolation errors and reduce image quality. Using the polar Fourier transform (PFT), we developed fully polar CS and DL algorithms for fast 2D cardiac radial-MRI. Our methods directly reconstruct images in polar spatial space from polar k-space data, eliminating frequency interpolation and ensuring an easy-to-compute data consistency term for the DL framework via the variable splitting (VS) scheme. Furthermore, PFT reconstruction produces initial images with fewer artifacts in a reduced field of view, making it a better starting point for CS and DL algorithms, especially for dynamic imaging, where information from a small region of interest is critical, as opposed to NUFFT, which often results in global streaking artifacts. In the cardiac region, PFT-based CS technique outperformed NUFFT-based CS at acceleration rates of 5x (mean SSIM: 0.8831 vs. 0.8526), 10x (0.8195 vs. 0.7981), and 15x (0.7720 vs. 0.7503). Our PFT(VS)-DL technique outperformed the NUFFT(GD)-based DL method, which used unrolled gradient descent with the NUFFT as the forward imaging operator, with mean SSIM scores of 0.8914 versus 0.8617 at 10x and 0.8470 versus 0.8301 at 15x. Radiological assessments revealed that PFT(VS)-based DL scored 2.9±0.30 and 2.73±0.45 at 5x and 10x, whereas NUFFT(GD)-based DL scored 2.7±0.47 and 2.40±0.50, respectively. Our methods suggest a promising alternative to NUFFT-based fast radial-MRI for dynamic imaging, prioritizing reconstruction quality in a small region of interest over whole image quality.
Page 3 of 27270 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.