Sort by:
Page 3 of 23224 results

Retrospective evaluation of interval breast cancer screening mammograms by radiologists and AI.

Subelack J, Morant R, Blum M, Gräwingholt A, Vogel J, Geissler A, Ehlig D

pubmed logopapersAug 4 2025
To determine whether an AI system can identify breast cancer risk in interval breast cancer (IBC) screening mammograms. IBC screening mammograms from a Swiss screening program were retrospectively analyzed by radiologists/an AI system. Radiologists determined whether the IBC mammogram showed human visible signs of breast cancer (potentially missed IBCs) or not (IBCs without retrospective abnormalities). The AI system provided a case score and a prognostic risk category per mammogram. 119 IBC cases (mean age 57.3 (5.4)) were available with complete retrospective evaluations by radiologists/the AI system. 82 (68.9%) were classified as IBCs without retrospective abnormalities and 37 (31.1%) as potentially missed IBCs. 46.2% of all IBCs received a case score ≥ 25, 25.2% ≥ 50, and 13.4% ≥ 75. Of the 25.2% of the IBCs ≥ 50 (vs. 13.4% of a no breast cancer population), 45.2% had not been discussed during a consensus conference, reflecting 11.4% of all IBC cases. The potentially missed IBCs received significantly higher case scores and risk classifications than IBCs without retrospective abnormalities (case score mean: 54.1 vs. 23.1; high risk: 48.7% vs. 14.7%; p < 0.05). 13.4% of the IBCs without retrospective abnormalities received a case score ≥ 50, of which 62.5% had not been discussed during a consensus conference. An AI system can identify IBC screening mammograms with a higher risk for breast cancer, particularly in potentially missed IBCs but also in some IBCs without retrospective abnormalities where radiologists did not see anything, indicating its ability to improve mammography screening quality. Question AI presents a promising opportunity to enhance breast cancer screening in general, but evidence is missing regarding its ability to reduce interval breast cancers. Findings The AI system detected a high risk of breast cancer in most interval breast cancer screening mammograms where radiologists retrospectively detected abnormalities. Clinical relevance Utilization of an AI system in mammography screening programs can identify breast cancer risk in many interval breast cancer screening mammograms and thus potentially reduce the number of interval breast cancers.

Contrast-Enhanced Ultrasound-Based Intratumoral and Peritumoral Radiomics for Discriminating Carcinoma In Situ and Invasive Carcinoma of the Breast.

Zheng Y, Song Y, Wu T, Chen J, Du Y, Liu H, Wu R, Kuang Y, Diao X

pubmed logopapersAug 1 2025
This study aimed to evaluate the efficacy of a diagnostic model integrating intratumoral and peritumoral radiomic features based on contrast-enhanced ultrasound (CEUS) for differentiation between carcinoma in situ (CIS) and invasive breast carcinoma (IBC). Consecutive cases confirmed by postoperative histopathological analysis were retrospectively gathered, comprising 143 cases of CIS from January 2018 to May 2024, and 186 cases of IBC from May 2022 to May 2024, totaling 322 patients with 329 lesion and complete preoperative CEUS imaging. Intratumoral regions of interest (ROI) were defined in CEUS peak-phase images deferring gray-scale mode, while peritumoral ROI were defined by expanding 2 mm, 5 mm, and 8 mm beyond the tumor margin for radiomic features extraction. Statistical and machine learning techniques were employed for feature selection. Logistic regression classifier was utilized to construct radiomic models integrating intratumoral, peritumoral, and clinical features. Model performance was assessed using the area under the curve (AUC). The model incorporating 5 mm peritumoral features with intratumoral and clinical data exhibited superior diagnostic performance, achieving AUCs of 0.927 and 0.911 in the training and test sets, respectively. It outperformed models based only on clinical features or other radiomic configurations, with the 5 mm peritumoral region proving most effective for lesions discrimination. This study highlights the significant potential of combined intratumoral and peritumoral CEUS radiomics for classifying CIS and IBC, with the integration of 5 mm peritumoral features notably enhancing diagnostic accuracy.

A RF-based end-to-end Breast Cancer Prediction algorithm.

Win KN

pubmed logopapersAug 1 2025
Breast cancer became the primary cause of cancer-related deaths among women year by year. Early detection and accurate prediction of breast cancer play a crucial role in strengthening the quality of human life. Many scientists have concentrated on analyzing and conducting the development of many algorithms and progressing computer-aided diagnosis applications. Whereas many research have been conducted, feature research on cancer diagnosis is rare, especially regarding predicting the desired features by providing and feeding breast cancer features into the system. In this regard, this paper proposed a Breast Cancer Prediction (RF-BCP) algorithm based on Random Forest by taking inputs to predict cancer. For the experiment of the proposed algorithm, two datasets were utilized namely Breast Cancer dataset and a curated mammography dataset, and also compared the accuracy of the proposed algorithm with SVM, Gaussian NB, and KNN algorithms. Experimental results show that the proposed algorithm can predict well and outperform other existing machine learning algorithms to support decision-making.

LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI

Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck

arxiv logopreprintAug 1 2025
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI

Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian F. Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck

arxiv logopreprintAug 1 2025
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Towards Affordable Tumor Segmentation and Visualization for 3D Breast MRI Using SAM2

Solha Kang, Eugene Kim, Joris Vankerschaver, Utku Ozbulak

arxiv logopreprintJul 31 2025
Breast MRI provides high-resolution volumetric imaging critical for tumor assessment and treatment planning, yet manual interpretation of 3D scans remains labor-intensive and subjective. While AI-powered tools hold promise for accelerating medical image analysis, adoption of commercial medical AI products remains limited in low- and middle-income countries due to high license costs, proprietary software, and infrastructure demands. In this work, we investigate whether the Segment Anything Model 2 (SAM2) can be adapted for low-cost, minimal-input 3D tumor segmentation in breast MRI. Using a single bounding box annotation on one slice, we propagate segmentation predictions across the 3D volume using three different slice-wise tracking strategies: top-to-bottom, bottom-to-top, and center-outward. We evaluate these strategies across a large cohort of patients and find that center-outward propagation yields the most consistent and accurate segmentations. Despite being a zero-shot model not trained for volumetric medical data, SAM2 achieves strong segmentation performance under minimal supervision. We further analyze how segmentation performance relates to tumor size, location, and shape, identifying key failure modes. Our results suggest that general-purpose foundation models such as SAM2 can support 3D medical image analysis with minimal supervision, offering an accessible and affordable alternative for resource-constrained settings.

Application of Tuning-Ensemble N-Best in Auto-Sklearn for Mammographic Radiomic Analysis for Breast Cancer Prediction.

Ismail FA, Karim MKA, Zaidon SIA, Noor KA

pubmed logopapersJul 31 2025
Breast cancer is a major cause of mortality among women globally. While mammography remains the gold standard for detection, its interpretation is often limited by radiologist variability and the challenge of differentiating benign and malignant lesions. The study explores the use of Auto- Sklearn, an automated machine learning (AutoML) framework, for breast tumor classification based on mammographic radiomic features. 244 mammographic images were enhanced using Contrast Limited Adaptive Histogram Equalization (CLAHE) and segmented with Active Contour Method (ACM). Thirty-seven radiomic features, including first-order statistics, Gray-Level Co-occurance Matrix (GLCM) texture and shape features were extracted and standardized. Auto-Sklearn was employed to automate model selection, hyperparameter tuning and ensemble construction. The dataset was divided into 80% training and 20% testing set. The initial Auto-Sklearn model achieved an 88.71% accuracy on the training set and 55.10% on the testing sets. After the resampling strategy was applied, the accuracy for the training set and testing set increased to 95.26% and 76.16%, respectively. The Receiver Operating Curve and Area Under Curve (ROC-AUC) for the standard and resampling strategy of Auto-Sklearn were 0.660 and 0.840, outperforming conventional models, demonstrating its efficiency in automating radiomic classification tasks. The findings underscore Auto-Sklearn's ability to automate and enhance tumor classification performance using handcrafted radiomic features. Limitations include dataset size and absence of clinical metadata. This study highlights the application of Auto-Sklearn as a scalable, automated and clinically relevant tool for breast cancer classification using mammographic radiomics.

Risk inventory and mitigation actions for AI in medical imaging-a qualitative study of implementing standalone AI for screening mammography.

Gerigoorian A, Kloub M, Dembrower K, Engwall M, Strand F

pubmed logopapersJul 30 2025
Recent prospective studies have shown that AI may be integrated in double-reader settings to increase cancer detection. The ScreenTrustCAD study was conducted at the breast radiology department at the Capio S:t Göran Hospital where AI is now implemented in clinical practice. This study reports on how the hospital prepared by exploring risks from an enterprise risk management perspective, i.e., applying a holistic and proactive perspective, and developed risk mitigation actions. The study was conducted as an integral part of the preparations before implementing AI in a breast imaging department. Collaborative ideation sessions were conducted with personnel at the hospital, either directly or indirectly involved with AI, to identify risks. Two external experts with competencies in cybersecurity, machine learning, and the ethical aspects of AI, were interviewed as a complement. The risks identified were analyzed according to an Enterprise Risk Management framework, adopted for healthcare, that assumes risks to be emerging from eight different domains. Finally, appropriate risk mitigation actions were identified and discussed. Twenty-three risks were identified covering seven of eight risk domains, in turn generating 51 suggested risk mitigation actions. Not only does the study indicate the emergence of patient safety risks, but it also shows that there are operational, strategic, financial, human capital, legal, and technological risks. The risks with most suggested mitigation actions were ‘Radiographers unable to answer difficult questions from patients’, ‘Increased risk that patient-reported symptoms are missed by the single radiologist’, ‘Increased pressure on the single reader knowing they are the only radiologist to catch a mistake by AI’, and ‘The performance of the AI algorithm might deteriorate’. Before a clinical integration of AI, hospitals should expand, identify, and address risks beyond immediate patient safety by applying comprehensive and proactive risk management. The online version contains supplementary material available at 10.1186/s12913-025-13176-9.

Refined prognostication of pathological complete response in breast cancer using radiomic features and optimized InceptionV3 with DCE-MRI.

Pattanayak S, Singh T, Kumar R

pubmed logopapersJul 30 2025
Neoadjuvant therapy plays a pivotal role in breast cancer treatment, particularly for patients aiming to conserve their breast by reducing tumor size pre-surgery. The ultimate goal of this treatment is achieving a pathologic complete response (pCR), which signifies the complete eradication of cancer cells, thereby lowering the likelihood of recurrence. This study introduces a novel predictive approach to identify patients likely to achieve pCR using radiomic features extracted from MR images, enhanced by the InceptionV3 model and cutting-edge validation methodologies. In our study, we gathered data from 255 unique Patient IDs sourced from the -SPY 2 MRI database with the goal of classifying pCR (pathological complete response). Our research introduced two key areas of novelty.Firstly, we explored the extraction of advanced features from the dcom series such as Area, Perimeter, Entropy, Intensity of the places where the intensity is more than the average intensity of the image. These features provided deeper insights into the characteristics of the MRI data and enhanced the discriminative power of our classification model.Secondly, we applied these extracted features along with combine pixel array of the dcom series of each patient to the numerous deep learning model along with InceptionV3 (GoogleNet) model which provides the best accuracy. To optimize the model's performance, we experimented with different combinations of loss functions, optimizer functions, and activation functions. Lastly, our classification results were subjected to validation using accuracy, AUC, Sensitivity, Specificity and F1 Score. These evaluation metrics provided a robust assessment of the model's performance and ensured the reliability of our findings. The successful combination of advanced feature extraction, utilization of the InceptionV3 model with tailored hyperparameters, and thorough validation using cutting-edge techniques significantly enhanced the accuracy and reliability of our pCR classification study. By adopting a collaborative approach that involved both radiologists and the computer-aided system, we achieved superior predictive performance for pCR, as evidenced by the impressive values obtained for the area under the curve (AUC) at 0.91 having an accuracy of .92. Overall, the combination of advanced feature extraction, leveraging the InceptionV3 model with customized hyperparameters, and rigorous validation using state-of-the-art techniques contributed to the accuracy and credibility of our pCR classification study.

Ultrasound derived deep learning features for predicting axillary lymph node metastasis in breast cancer using graph convolutional networks in a multicenter study.

Agyekum EA, Kong W, Agyekum DN, Issaka E, Wang X, Ren YZ, Tan G, Jiang X, Shen X, Qian X

pubmed logopapersJul 30 2025
The purpose of this study was to create and validate an ultrasound-based graph convolutional network (US-based GCN) model for the prediction of axillary lymph node metastasis (ALNM) in patients with breast cancer. A total of 820 eligible patients with breast cancer who underwent preoperative breast ultrasonography (US) between April 2016 and June 2022 were retrospectively enrolled. The training cohort consisted of 621 patients, whereas validation cohort 1 included 112 patients, and validation cohort 2 included 87 patients. A US-based GCN model was built using US deep learning features. In validation cohort 1, the US-based GCN model performed satisfactorily, with an AUC of 0.88 and an accuracy of 0.76. In validation cohort 2, the US-based GCN model performed satisfactorily, with an AUC of 0.84 and an accuracy of 0.75. This approach has the potential to help guide optimal ALNM management in breast cancer patients, particularly by preventing overtreatment. In conclusion, we developed a US-based GCN model to assess the ALN status of breast cancer patients prior to surgery. The US-based GCN model can provide a possible noninvasive method for detecting ALNM and aid in clinical decision-making. High-level evidence for clinical use in later studies is anticipated to be obtained through prospective studies.
Page 3 of 23224 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.