Sort by:
Page 287 of 3343333 results

Deep Learning-Based Multimodal Feature Interaction-Guided Fusion: Enhancing the Evaluation of EGFR in Advanced Lung Adenocarcinoma.

Xu J, Feng B, Chen X, Wu F, Liu Y, Yu Z, Lu S, Duan X, Chen X, Li K, Zhang W, Dai X

pubmed logopapersMay 22 2025
The aim of this study is to develop a deep learning-based multimodal feature interaction-guided fusion (DL-MFIF) framework that integrates macroscopic information from computed tomography (CT) images with microscopic information from whole-slide images (WSIs) to predict the epidermal growth factor receptor (EGFR) mutations of primary lung adenocarcinoma in patients with advanced-stage disease. Data from 396 patients with lung adenocarcinoma across two medical institutions were analyzed. The data from 243 cases were divided into a training set (n=145) and an internal validation set (n=98) in a 6:4 ratio, and data from an additional 153 cases from another medical institution were included as an external validation set. All cases included CT scan images and WSIs. To integrate multimodal information, we developed the DL-MFIF framework, which leverages deep learning techniques to capture the interactions between radiomic macrofeatures derived from CT images and microfeatures obtained from WSIs. Compared to other classification models, the DL-MFIF model achieved significantly higher area under the curve (AUC) values. Specifically, the model outperformed others on both the internal validation set (AUC=0.856, accuracy=0.750) and the external validation set (AUC=0.817, accuracy=0.708). Decision curve analysis (DCA) demonstrated that the model provided superior net benefits(range 0.15-0.87). Delong's test for external validation confirmed the statistical significance of the results (P<0.05). The DL-MFIF model demonstrated excellent performance in evaluating and distinguishing the EGFR in patients with advanced lung adenocarcinoma. This model effectively aids radiologists in accurately classifying EGFR mutations in patients with primary lung adenocarcinoma, thereby improving treatment outcomes for this population.

CT-Agent: A Multimodal-LLM Agent for 3D CT Radiology Question Answering

Yuren Mao, Wenyi Xu, Yuyang Qin, Yunjun Gao

arxiv logopreprintMay 22 2025
Computed Tomography (CT) scan, which produces 3D volumetric medical data that can be viewed as hundreds of cross-sectional images (a.k.a. slices), provides detailed anatomical information for diagnosis. For radiologists, creating CT radiology reports is time-consuming and error-prone. A visual question answering (VQA) system that can answer radiologists' questions about some anatomical regions on the CT scan and even automatically generate a radiology report is urgently needed. However, existing VQA systems cannot adequately handle the CT radiology question answering (CTQA) task for: (1) anatomic complexity makes CT images difficult to understand; (2) spatial relationship across hundreds slices is difficult to capture. To address these issues, this paper proposes CT-Agent, a multimodal agentic framework for CTQA. CT-Agent adopts anatomically independent tools to break down the anatomic complexity; furthermore, it efficiently captures the across-slice spatial relationship with a global-local token compression strategy. Experimental results on two 3D chest CT datasets, CT-RATE and RadGenome-ChestCT, verify the superior performance of CT-Agent.

SAMba-UNet: Synergizing SAM2 and Mamba in UNet with Heterogeneous Aggregation for Cardiac MRI Segmentation

Guohao Huo, Ruiting Dai, Hao Tang

arxiv logopreprintMay 22 2025
To address the challenge of complex pathological feature extraction in automated cardiac MRI segmentation, this study proposes an innovative dual-encoder architecture named SAMba-UNet. The framework achieves cross-modal feature collaborative learning by integrating the vision foundation model SAM2, the state-space model Mamba, and the classical UNet. To mitigate domain discrepancies between medical and natural images, a Dynamic Feature Fusion Refiner is designed, which enhances small lesion feature extraction through multi-scale pooling and a dual-path calibration mechanism across channel and spatial dimensions. Furthermore, a Heterogeneous Omni-Attention Convergence Module (HOACM) is introduced, combining global contextual attention with branch-selective emphasis mechanisms to effectively fuse SAM2's local positional semantics and Mamba's long-range dependency modeling capabilities. Experiments on the ACDC cardiac MRI dataset demonstrate that the proposed model achieves a Dice coefficient of 0.9103 and an HD95 boundary error of 1.0859 mm, significantly outperforming existing methods, particularly in boundary localization for complex pathological structures such as right ventricular anomalies. This work provides an efficient and reliable solution for automated cardiac disease diagnosis, and the code will be open-sourced.

High-resolution deep learning reconstruction to improve the accuracy of CT fractional flow reserve.

Tomizawa N, Fan R, Fujimoto S, Nozaki YO, Kawaguchi YO, Takamura K, Hiki M, Aikawa T, Takahashi N, Okai I, Okazaki S, Kumamaru KK, Minamino T, Aoki S

pubmed logopapersMay 22 2025
This study aimed to compare the diagnostic performance of CT-derived fractional flow reserve (CT-FFR) using model-based iterative reconstruction (MBIR) and high-resolution deep learning reconstruction (HR-DLR) images to detect functionally significant stenosis with invasive FFR as the reference standard. This single-center retrospective study included 79 consecutive patients (mean age, 70 ± 11 [SD] years; 57 male) who underwent coronary CT angiography followed by invasive FFR between February 2022 and March 2024. CT-FFR was calculated using a mesh-free simulation. The cutoff for functionally significant stenosis was defined as FFR ≤ 0.80. CT-FFR was compared with MBIR and HR-DLR using receiver operating characteristic curve analysis. The mean invasive FFR value was 0.81 ± 0.09, and 46 of 98 vessels (47%) had FFR ≤ 0.80. The mean noise of HR-DLR was lower than that of MBIR (14.4 ± 1.7 vs 23.5 ± 3.1, p < 0.001). The area under the receiver operating characteristic curve for the diagnosis of functionally significant stenosis of HR-DLR (0.88; 95% CI: 0.80, 0.95) was higher than that of MBIR (0.76; 95% CI: 0.67, 0.86; p = 0.003). The diagnostic accuracy of HR-DLR (88%; 86 of 98 vessels; 95% CI: 80, 94) was higher than that of MBIR (70%; 69 of 98 vessels; 95% CI: 60, 79; p < 0.001). HR-DLR improves image quality and the diagnostic performance of CT-FFR for the diagnosis of functionally significant stenosis. Question The effect of HR-DLR on the diagnostic performance of CT-FFR has not been investigated. Findings HR-DLR improved the diagnostic performance of CT-FFR over MBIR for the diagnosis of functionally significant stenosis as assessed by invasive FFR. Clinical relevance HR-DLR would further enhance the clinical utility of CT-FFR in diagnosing the functional significance of coronary stenosis.

CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI

Mohamed S. Elmahdy, Marius Staring, Patrick J. H. de Koning, Samer Alabed, Mahan Salehi, Faisal Alandejani, Michael Sharkey, Ziad Aldabbagh, Andrew J. Swift, Rob J. van der Geest

arxiv logopreprintMay 22 2025
Accurate and efficient quantification of cardiac function is essential for the estimation of prognosis of cardiovascular diseases (CVDs). One of the most commonly used metrics for evaluating cardiac pumping performance is left ventricular ejection fraction (LVEF). However, LVEF can be affected by factors such as inter-observer variability and varying pre-load and after-load conditions, which can reduce its reproducibility. Additionally, cardiac dysfunction may not always manifest as alterations in LVEF, such as in heart failure and cardiotoxicity diseases. An alternative measure that can provide a relatively load-independent quantitative assessment of myocardial contractility is myocardial strain and strain rate. By using LVEF in combination with myocardial strain, it is possible to obtain a thorough description of cardiac function. Automated estimation of LVEF and other volumetric measures from cine-MRI sequences can be achieved through segmentation models, while strain calculation requires the estimation of tissue displacement between sequential frames, which can be accomplished using registration models. These tasks are often performed separately, potentially limiting the assessment of cardiac function. To address this issue, in this study we propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images. The proposed anatomically-guided Deep GW network was trained and validated on a large dataset of 4-chamber view cine-MRI image series of 374 subjects. A quantitative comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.

An Exploratory Approach Towards Investigating and Explaining Vision Transformer and Transfer Learning for Brain Disease Detection

Shuvashis Sarker, Shamim Rahim Refat, Faika Fairuj Preotee, Shifat Islam, Tashreef Muhammad, Mohammad Ashraful Hoque

arxiv logopreprintMay 21 2025
The brain is a highly complex organ that manages many important tasks, including movement, memory and thinking. Brain-related conditions, like tumors and degenerative disorders, can be hard to diagnose and treat. Magnetic Resonance Imaging (MRI) serves as a key tool for identifying these conditions, offering high-resolution images of brain structures. Despite this, interpreting MRI scans can be complicated. This study tackles this challenge by conducting a comparative analysis of Vision Transformer (ViT) and Transfer Learning (TL) models such as VGG16, VGG19, Resnet50V2, MobilenetV2 for classifying brain diseases using MRI data from Bangladesh based dataset. ViT, known for their ability to capture global relationships in images, are particularly effective for medical imaging tasks. Transfer learning helps to mitigate data constraints by fine-tuning pre-trained models. Furthermore, Explainable AI (XAI) methods such as GradCAM, GradCAM++, LayerCAM, ScoreCAM, and Faster-ScoreCAM are employed to interpret model predictions. The results demonstrate that ViT surpasses transfer learning models, achieving a classification accuracy of 94.39%. The integration of XAI methods enhances model transparency, offering crucial insights to aid medical professionals in diagnosing brain diseases with greater precision.

Deep learning radiopathomics based on pretreatment MRI and whole slide images for predicting over survival in locally advanced nasopharyngeal carcinoma.

Yi X, Yu X, Li C, Li J, Cao H, Lu Q, Li J, Hou J

pubmed logopapersMay 21 2025
To develop an integrative radiopathomic model based on deep learning to predict overall survival (OS) in locally advanced nasopharyngeal carcinoma (LANPC) patients. A cohort of 343 LANPC patients with pretreatment MRI and whole slide image (WSI) were randomly divided into training (n = 202), validation (n = 91), and external test (n = 50) sets. For WSIs, a self-attention mechanism was employed to assess the significance of different patches for the prognostic task, aggregating them into a WSI-level representation. For MRI, a multilayer perceptron was used to encode the extracted radiomic features, resulting in an MRI-level representation. These were combined in a multimodal fusion model to produce prognostic predictions. Model performances were evaluated using the concordance index (C-index), and Kaplan-Meier curves were employed for risk stratification. To enhance model interpretability, attention-based and Integrated Gradients techniques were applied to explain how WSIs and MRI features contribute to prognosis predictions. The radiopathomics model achieved high predictive accuracy in predicting the OS, with a C-index of 0.755 (95 % CI: 0.673-0.838) and 0.744 (95 % CI: 0.623-0.808) in the training and validation sets, respectively, outperforming single-modality models (radiomic signature: 0.636, 95 % CI: 0.584-0.688; deep pathomic signature: 0.736, 95 % CI: 0.684-0.810). In the external test, similar findings were observed for the predictive performance of the radiopathomics, radiomic signature, and deep pathomic signature, with their C-indices being 0.735, 0.626, and 0.660 respectively. The radiopathomics model effectively stratified patients into high- and low-risk groups (P < 0.001). Additionally, attention heatmaps revealed that high-attention regions corresponded with tumor areas in both risk groups. n: The radiopathomics model holds promise for predicting clinical outcomes in LANPC patients, offering a potential tool for improving clinical decision-making.

Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models

Frederic Wang, Jonathan I. Tamir

arxiv logopreprintMay 21 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.

An automated deep learning framework for brain tumor classification using MRI imagery.

Aamir M, Rahman Z, Bhatti UA, Abro WA, Bhutto JA, He Z

pubmed logopapersMay 21 2025
The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring individualized treatment strategies for each patient. Radiologists require considerable proficiency to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, and labor-intensive in manual procedures, underscoring the need for automated methods. This study introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) images, minimizing dependence on manual intervention. The proposed method improves image clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished through an attention module that isolates distinctive features while eliminating irrelevant information. An ensemble model is employed to classify brain tumors into different categories. The proposed technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in terms of automation and robustness, thereby enhancing the entire diagnostic process.
Page 287 of 3343333 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.