Sort by:
Page 283 of 3463455 results

Ensemble of weak spectral total-variation learners: a PET-CT case study.

Rosenberg A, Kennedy J, Keidar Z, Zeevi YY, Gilboa G

pubmed logopapersJun 5 2025
Solving computer vision problems through machine learning, one often encounters lack of sufficient training data. To mitigate this, we propose the use of ensembles of weak learners based on spectral total-variation (STV) features (Gilboa G. 2014 A total variation spectral framework for scale and texture analysis. <i>SIAM J. Imaging Sci</i>. <b>7</b>, 1937-1961. (doi:10.1137/130930704)). The features are related to nonlinear eigenfunctions of the total-variation subgradient and can characterize well textures at various scales. It was shown (Burger M, Gilboa G, Moeller M, Eckardt L, Cremers D. 2016 Spectral decompositions using one-homogeneous functionals. <i>SIAM J. Imaging Sci</i>. <b>9</b>, 1374-1408. (doi:10.1137/15m1054687)) that, in the one-dimensional case, orthogonal features are generated, whereas in two dimensions the features are empirically lowly correlated. Ensemble learning theory advocates the use of lowly correlated weak learners. We thus propose here to design ensembles using learners based on STV features. To show the effectiveness of this paradigm, we examine a hard real-world medical imaging problem: the predictive value of computed tomography (CT) data for high uptake in positron emission tomography (PET) for patients suspected of skeletal metastases. The database consists of 457 scans with 1524 unique pairs of registered CT and PET slices. Our approach is compared with deep-learning methods and to radiomics features, showing STV learners perform best (AUC=[Formula: see text]), compared with neural nets (AUC=[Formula: see text]) and radiomics (AUC=[Formula: see text]). We observe that fine STV scales in CT images are especially indicative of the presence of high uptake in PET.This article is part of the theme issue 'Partial differential equations in data science'.

Matrix completion-informed deep unfolded equilibrium models for self-supervised <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>k</mi> <annotation>$k$</annotation></semantics> </math> -space interpolation in MRI.

Luo C, Wang H, Liu Y, Xie T, Chen G, Jin Q, Liang D, Cui ZX

pubmed logopapersJun 5 2025
Self-supervised methods for magnetic resonance imaging (MRI) reconstruction have garnered significant interest due to their ability to address the challenges of slow data acquisition and scarcity of fully sampled labels. Current regularization-based self-supervised techniques merge the theoretical foundations of regularization with the representational strengths of deep learning and enable effective reconstruction under higher acceleration rates, yet often fall short in interpretability, leaving their theoretical underpinnings lacking. In this paper, we introduce a novel self-supervised approach that provides stringent theoretical guarantees and interpretable networks while circumventing the need for fully sampled labels. Our method exploits the intrinsic relationship between convolutional neural networks and the null space within structural low-rank models, effectively integrating network parameters into an iterative reconstruction process. Our network learns gradient descent steps of the projected gradient descent algorithm without changing its convergence property, which implements a fully interpretable unfolded model. We design a non-expansive mapping for the network architecture, ensuring convergence to a fixed point. This well-defined framework enables complete reconstruction of missing <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>k</mi> <annotation>$k$</annotation></semantics> </math> -space data grounded in matrix completion theory, independent of fully sampled labels. Qualitative and quantitative experimental results on multi-coil MRI reconstruction demonstrate the efficacy of our self-supervised approach, showing marked improvements over existing self-supervised and traditional regularization methods, achieving results comparable to supervised learning in selected scenarios. Our method surpasses existing self-supervised approaches in reconstruction quality and also delivers competitive performance under supervised settings. This work not only advances the state-of-the-art in MRI reconstruction but also enhances interpretability in deep learning applications for medical imaging.

Stable Vision Concept Transformers for Medical Diagnosis

Lijie Hu, Songning Lai, Yuan Hua, Shu Yang, Jingfeng Zhang, Di Wang

arxiv logopreprintJun 5 2025
Transparency is a paramount concern in the medical field, prompting researchers to delve into the realm of explainable AI (XAI). Among these XAI methods, Concept Bottleneck Models (CBMs) aim to restrict the model's latent space to human-understandable high-level concepts by generating a conceptual layer for extracting conceptual features, which has drawn much attention recently. However, existing methods rely solely on concept features to determine the model's predictions, which overlook the intrinsic feature embeddings within medical images. To address this utility gap between the original models and concept-based models, we propose Vision Concept Transformer (VCT). Furthermore, despite their benefits, CBMs have been found to negatively impact model performance and fail to provide stable explanations when faced with input perturbations, which limits their application in the medical field. To address this faithfulness issue, this paper further proposes the Stable Vision Concept Transformer (SVCT) based on VCT, which leverages the vision transformer (ViT) as its backbone and incorporates a conceptual layer. SVCT employs conceptual features to enhance decision-making capabilities by fusing them with image features and ensures model faithfulness through the integration of Denoised Diffusion Smoothing. Comprehensive experiments on four medical datasets demonstrate that our VCT and SVCT maintain accuracy while remaining interpretable compared to baselines. Furthermore, even when subjected to perturbations, our SVCT model consistently provides faithful explanations, thus meeting the needs of the medical field.

Automatic cervical tumors segmentation in PET/MRI by parallel encoder U-net.

Liu S, Tan Z, Gong T, Tang X, Sun H, Shang F

pubmed logopapersJun 5 2025
Automatic segmentation of cervical tumors is important in quantitative analysis and radiotherapy planning. A parallel encoder U-Net (PEU-Net) integrating the multi-modality information of PET/MRI was proposed to segment cervical tumor, which consisted of two parallel encoders with the same structure for PET and MR images. The features of the two modalities were extracted separately and fused at each layer of the decoder. Res2Net module on skip connection aggregated the features of various scales and refined the segmentation performance. PET/MRI images of 165 patients with cervical cancer were included in this study. U-Net, TransUNet, and nnU-Net with single or multi-modality (PET or/and T2WI) input were used for comparison. The Dice similarity coefficient (DSC) with volume data, DSC and the 95th percentile of Hausdorff distance (HD95) with tumor slices were calculated to evaluate the performance. The proposed PEU-Net exhibited the best performance (DSC<sub>3d</sub>: 0.726 ± 0.204, HD<sub>95</sub>: 4.603 ± 4.579 mm), DSC<sub>2d</sub> (0.871 ± 0.113) was comparable to the best result of TransUNet with PET/MRI (0.873 ± 0.125). The networks with multi-modality input outperformed those with single-modality images as input. The results showed that the proposed PEU-Net could use multi-modality information more effectively through the redesigned structure and achieved competitive performance.

Multitask deep learning model based on multimodal data for predicting prognosis of rectal cancer: a multicenter retrospective study.

Ma Q, Meng R, Li R, Dai L, Shen F, Yuan J, Sun D, Li M, Fu C, Li R, Feng F, Li Y, Tong T, Gu Y, Sun Y, Shen D

pubmed logopapersJun 5 2025
Prognostic prediction is crucial to guide individual treatment for patients with rectal cancer. We aimed to develop and validated a multitask deep learning model for predicting prognosis in rectal cancer patients. This retrospective study enrolled 321 rectal cancer patients (training set: 212; internal testing set: 53; external testing set: 56) who directly received total mesorectal excision from five hospitals between March 2014 to April 2021. A multitask deep learning model was developed to simultaneously predict recurrence/metastasis and disease-free survival (DFS). The model integrated clinicopathologic data and multiparametric magnetic resonance imaging (MRI) images including diffusion kurtosis imaging (DKI), without performing tumor segmentation. The receiver operating characteristic (ROC) curve and Harrell's concordance index (C-index) were used to evaluate the predictive performance of the proposed model. The deep learning model achieved good discrimination capability of recurrence/metastasis, with area under the curve (AUC) values of 0.885, 0.846, and 0.797 in the training, internal testing and external testing sets, respectively. Furthermore, the model successfully predicted DFS in the training set (C-index: 0.812), internal testing set (C-index: 0.794), and external testing set (C-index: 0.733), and classified patients into significantly distinct high- and low-risk groups (p < 0.05). The multitask deep learning model, incorporating clinicopathologic data and multiparametric MRI, effectively predicted both recurrence/metastasis and survival for patients with rectal cancer. It has the potential to be an essential tool for risk stratification, and assist in making individualized treatment decisions. Not applicable.

Quantitative and automatic plan-of-the-day assessment to facilitate adaptive radiotherapy in cervical cancer.

Mason SA, Wang L, Alexander SE, Lalondrelle S, McNair HA, Harris EJ

pubmed logopapersJun 5 2025
To facilitate implementation of plan-of-the-day (POTD) selection for treating locally advanced cervical cancer (LACC), we developed a POTD assessment tool for CBCT-guided radiotherapy (RT). A female pelvis segmentation model (U-Seg3) is combined with a quantitative standard operating procedure (qSOP) to identify optimal and acceptable plans. &#xD;&#xD;Approach: The planning CT[i], corresponding structure set[ii], and manually contoured CBCTs[iii] (n=226) from 39 LACC patients treated with POTD (n=11) or non-adaptive RT (n=28) were used to develop U-Seg3, an algorithm incorporating deep-learning and deformable image registration techniques to segment the low-risk clinical target volume (LR-CTV), high-risk CTV (HR-CTV), bladder, rectum, and bowel bag. A single-channel input model (iii only, U-Seg1) was also developed. Contoured CBCTs from the POTD patients were (a) reserved for U-Seg3 validation/testing, (b) audited to determine optimal and acceptable plans, and (c) used to empirically derive a qSOP that maximised classification accuracy. &#xD;&#xD;Main Results: The median [interquartile range] DSC between manual and U-Seg3 contours was 0.83 [0.80], 0.78 [0.13], 0.94 [0.05], 0.86[0.09], and 0.90 [0.05] for the LR-CTV, HR-CTV, bladder, rectum, and bowel bag. These were significantly higher than U-Seg1 in all structures but bladder. The qSOP classified plans as acceptable if they met target coverage thresholds (LR-CTV≧99%, HR-CTV≧99.8%), with lower LR-CTV coverage (≧95%) sometimes allowed. The acceptable plan minimising bowel irradiation was considered optimal unless substantial bladder sparing could be achieved. With U-Seg3 embedded in the qSOP, optimal and acceptable plans were identified in 46/60 and 57/60 cases. &#xD;&#xD;Significance: U-Seg3 outperforms U-Seg1 and all known CBCT-based female pelvis segmentation models. The tool combining U-Seg3 and the qSOP identifies optimal plans with equivalent accuracy as two observers. In an implementation strategy whereby this tool serves as the second observer, plan selection confidence and decision-making time could be improved whilst simultaneously reducing the required number of POTD-trained radiographers by 50%.&#xD;&#xD;&#xD.

Epistasis regulates genetic control of cardiac hypertrophy.

Wang Q, Tang TM, Youlton M, Weldy CS, Kenney AM, Ronen O, Hughes JW, Chin ET, Sutton SC, Agarwal A, Li X, Behr M, Kumbier K, Moravec CS, Tang WHW, Margulies KB, Cappola TP, Butte AJ, Arnaout R, Brown JB, Priest JR, Parikh VN, Yu B, Ashley EA

pubmed logopapersJun 5 2025
Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, using deep learning-derived left ventricular mass estimates from 29,661 UK Biobank cardiac magnetic resonance images. We report epistatic variants near CCDC141, IGF1R, TTN and TNKS, identifying loci deemed insignificant in genome-wide association studies. Functional genomic and integrative enrichment analyses reveal that genes mapped from these loci share biological process gene ontologies and myogenic regulatory factors. Transcriptomic network analyses using 313 human hearts demonstrate strong co-expression correlations among these genes in healthy hearts, with significantly reduced connectivity in failing hearts. To assess causality, RNA silencing in human induced pluripotent stem cell-derived cardiomyocytes, combined with novel microfluidic single-cell morphology analysis, confirms that cardiomyocyte hypertrophy is nonadditively modifiable by interactions between CCDC141, TTN and IGF1R. Our results expand the scope of cardiac genetic regulation to epistasis.

CT-based radiogenomic analysis to predict high-risk colon cancer (ATTRACT): a multicentric trial.

Caruso D, Polici M, Zerunian M, Monterubbiano A, Tarallo M, Pilozzi E, Belloni L, Scafetta G, Valanzuolo D, Pugliese D, De Santis D, Vecchione A, Mercantini P, Iannicelli E, Fiori E, Laghi A

pubmed logopapersJun 5 2025
Clinical staging on CT has several biases, and a radiogenomics approach could be proposed. The study aimed to test the performance of a radiogenomics approach in identifying high-risk colon cancer. ATTRACT is a multicentric trial, registered in ClinicalTrials.gov (NCT06108310). Three hundred non-metastatic colon cancer patients were retrospectively enrolled and divided into two groups, high-risk and no-risk, according to the pathological staging. Radiological evaluations were performed by two abdominal radiologists. For 151 patients, we achieved genomics. The baseline CT scans were used to evaluate the radiological assessment and to perform 3D cancer segmentation. One expert radiologist used open-source software to perform the volumetric cancer segmentations on baseline CT scans in the portal phase (3DSlicer v4.10.2). Implementing the classical LASSO with a machine-learning library method was used to select the optimal features to build Model 1 (clinical-radiological plus radiomic feature, 300 patients) and Model 2 (Model 1 plus genomics, 151 patients). The performance of clinical-radiological interpretation was assessed regarding the area under the curve (AUC), sensitivity, specificity, and accuracy. The average performance of Models 1 and 2 was also calculated. In total, 262/300 were classified as high-risk and 38/300 as no-risk. Clinical-radiological interpretation by the two radiologists achieved an AUC of 0.58-0.82 (95% CI: 0.52-0.63 and 0.76-0.85, p < 0.001, respectively), sensitivity: 67.9-93.8%, specificity: 47.4-68.4%, and accuracy: 65.3-90.7%, respectively. Model 1 yielded AUC: 0.74 (95% CI: 0.61-0.88, p < 0.005), sensitivity: 86%, specificity: 48%, and accuracy: 81%. Model2 reached AUC: 0.84, (95% CI: 0.68-0.99, p < 0.005), sensitivity: 88%, specificity: 63%, and accuracy: 84%. The radiogenomics model outperformed radiological interpretation in identifying high-risk colon cancer. Question Can this radiogenomic model identify high-risk stages II and III colon cancer in a preoperative clinical setting? Findings This radiogenomics model outperformed both the radiomics and radiological interpretations, reducing the risk of improper staging and incorrect treatment options. Clinical relevance The radiogenomics model was demonstrated to be superior to radiological interpretation and radiomics in identifying high-risk colon cancer, and could therefore be promising in stratifying high-risk and low-risk patients.

Preliminary analysis of AI-based thyroid nodule evaluation in a non-subspecialist endocrinology setting.

Fernández Velasco P, Estévez Asensio L, Torres B, Ortolá A, Gómez Hoyos E, Delgado E, de Luís D, Díaz Soto G

pubmed logopapersJun 5 2025
Thyroid nodules are commonly evaluated using ultrasound-based risk stratification systems, which rely on subjective descriptors. Artificial intelligence (AI) may improve assessment, but its effectiveness in non-subspecialist settings is unclear. This study evaluated the impact of an AI-based decision support system (AI-DSS) on thyroid nodule ultrasound assessments by general endocrinologists (GE) without subspecialty thyroid imaging training. A prospective cohort study was conducted on 80 patients undergoing thyroid ultrasound in GE outpatient clinics. Thyroid ultrasound was performed based on clinical judgment as part of routine care by GE. Images were retrospectively analyzed using an AI-DSS (Koios DS), independently of clinician assessments. AI-DSS results were compared with initial GE evaluations and, when referred, with expert evaluations at a subspecialized thyroid nodule clinic (TNC). Agreement in ultrasound features, risk classification by the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) and American Thyroid Association guidelines, and referral recommendations was assessed. AI-DSS differed notably from GE, particularly assessing nodule composition (solid: 80%vs.36%,p < 0.01), echogenicity (hypoechoic:52%vs.16%,p < 0.01), and echogenic foci (microcalcifications:10.7%vs.1.3%,p < 0.05). AI-DSS classification led to a higher referral rate compared to GE (37.3%vs.30.7%, not statistically significant). Agreement between AI-DSS and GE in ACR TI-RADS scoring was moderate (r = 0.337;p < 0.001), but improved when comparing GE to AI-DSS and TNC subspecialist (r = 0.465;p < 0.05 and r = 0.607;p < 0.05, respectively). In a non-subspecialist setting, non-adjunct AI-DSS use did not significantly improve risk stratification or reduce hypothetical referrals. The system tended to overestimate risk, potentially leading to unnecessary procedures. Further optimization is required for AI to function effectively in low-prevalence environment.

Enhancing image quality in fast neutron-based range verification of proton therapy using a deep learning-based prior in LM-MAP-EM reconstruction.

Setterdahl LM, Skjerdal K, Ratliff HN, Ytre-Hauge KS, Lionheart WRB, Holman S, Pettersen HES, Blangiardi F, Lathouwers D, Meric I

pubmed logopapersJun 5 2025
This study investigates the use of list-mode (LM) maximum a posteriori (MAP) expectation maximization (EM) incorporating prior information predicted by a convolutional neural network for image reconstruction in fast neutron (FN)-based proton therapy range verification.&#xD;Approach. A conditional generative adversarial network (pix2pix) was trained on progressively noisier data, where detector resolution effects were introduced gradually to simulate realistic conditions. FN data were generated using Monte Carlo simulations of an 85 MeV proton pencil beam in a computed tomography (CT)-based lung cancer patient model, with range shifts emulating weight gain and loss. The network was trained to estimate the expected two-dimensional (2D) ground truth FN production distribution from simple back-projection images. Performance was evaluated using mean squared error (MSE), structural similarity index (SSIM), and the correlation between shifts in predicted distributions and true range shifts. &#xD;Main results. Our results show that pix2pix performs well on noise-free data but suffers from significant degradation when detector resolution effects are introduced. Among the LM-MAP-EM approaches tested, incorporating a mean prior estimate into the reconstruction process improved performance, with LM-MAP-EM using a mean prior estimate outperforming naïve LM maximum likelihood EM (LM-MLEM) and conventional LM-MAP-EM with a smoothing quadratic energy function in terms of SSIM. &#xD;Significance. Findings suggest that deep learning techniques can enhance iterative reconstruction for range verification in proton therapy. However, the effectiveness of the model is highly dependent on data quality, limiting its robustness in high-noise scenarios.&#xD.
Page 283 of 3463455 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.