Sort by:
Page 280 of 6596585 results

DelaO-Arevalo LR, Sijtsema NM, van Dijk LV, Langendijk JA, Wijsman R, van Ooijen PMA

pubmed logopapersAug 9 2025
Accurate delineation of the Gross Tumor Volume (GTV) and the Internal Target Volume (ITV) in early-stage lung tumors is crucial in Stereotactic Body Radiation Therapy (SBRT). Traditionally, the ITVs, which account for breathing motion, are generated by manually contouring GTVs across all breathing phases (BPs), a time-consuming process. This research aims to streamline this workflow by developing a deep learning algorithm to automatically delineate GTVs in all four-dimensional computed tomography (4D-CT) BPs for early-stage Non-Small Cell Lung Cancer Patients (NSCLC). A dataset of 214 early-stage NSCLC patients treated with SBRT was used. Each patient had a 4D-CT scan containing ten reconstructed BPs. The data were divided into a training set (75 %) and a testing set (25 %). Three models SwinUNetR and Dynamic UNet (DynUnet), and a hybrid model combining both (Swin + Dyn)were trained and evaluated using the Dice Similarity Coefficient (DSC), 3 mm Surface Dice Similarity Coefficient (SDSC), and the 95<sup>th</sup> percentile Hausdorff distance (HD95). The best performing model was used to delineate GTVs in all test set BPs, creating the ITVs using two methods: all 10 phases and the maximum inspiration/expiration phases. The ITVs were compared to the ground truth ITVs. The Swin + Dyn model achieved the highest performance, with a test set SDSC of 0.79 ± 0.14 for GTV 50 %. For the ITVs, the SDSC was 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs. At the voxel level, the Swin + DynNet network achieved a sensitivity of 0.75 ± 0.14 and precision of 0.84 ± 0.10 for the ITV 2 breathing phases, and a sensitivity of 0.79 ± 0.12 and precision of 0.80 ± 0.11 for the 10 breathing phases. The Swin + Dyn Net algorithm, trained on the maximum expiration CT-scan effectively delineated gross tumor volumes in all breathing phases and the resulting ITV showed a good agreement with the ground truth (surface DSC = 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs.). The proposed approach could reduce delineation time and inter-performer variability in the tumor contouring process for NSCLC SBRT workflows.

Kero T, Knuuti J, Bär S, Bax JJ, Saraste A, Maaniitty T

pubmed logopapersAug 9 2025
It is unclear whether coronary artery stenosis, plaque burden, and composition differ between major epicardial arteries supplying ischemic myocardial territories. We studied 837 symptomatic patients undergoing coronary computed tomography angiography (CTA) and <sup>15</sup>O-water PET myocardial perfusion imaging for suspected obstructive coronary artery disease. Coronary CTA was analyzed using Artificial Intelligence-Guided Quantitative Computed Tomography (AI-QCT) to assess stenosis and atherosclerotic plaque characteristics. Myocardial ischemia was defined by regional PET perfusion in the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) territories. Among arteries supplying ischemic territories, the LAD exhibited significantly higher stenosis and both absolute and normalized plaque volumes compared to LCX and RCA (p<0.001 for all). Multivariable logistic regression showed diameter stenosis (p=0.001-0.015), percent atheroma volume (PAV; p<0.001), and percent non-calcified plaque volume (p=0.001-0.017) were associated with ischemia across all three arteries. Percent calcified plaque volume was associated with ischemia only in the RCA (p=0.001). The degree of stenosis and atherosclerotic burden are significantly higher in LAD as compared to LCX and RCA, both in epicardial coronary arteries supplying non-ischemic or ischemic myocardial territories. In all the three main coronary arteries both luminal narrowing and plaque burden are independent predictors of ischemia, where the plaque burden is mainly driven by non-calcified plaque. However, many vessels supplying ischemic territories have relatively low stenosis degree and plaque burden, especially in the LCx and RCA, limiting the ability of diameter stenosis and PAV to predict myocardial ischemia.

Feng Y, Xu Y, Wang J, Cao Z, Liu B, Du Z, Zhou L, Hua H, Wang W, Mei J, Lai L, Tu J

pubmed logopapersAug 9 2025
Bronchial artery chemoembolization (BACE) is a new treatment method for lung cancer. This study aimed to investigate the ability of dual-energy computed tomography (DECT) to predict early recurrence (ER) after BACE among patients with non-small cell lung cancer (NSCLC) who failed first-line therapy. Clinical and imaging data from NSCLC patients undergoing BACE at Wenzhou Medical University Affiliated Fifth *** Hospital (10/2023-06/2024) were retrospectively analyzed. Logistic regression (LR) machine learning models were developed using 5 arterial-phase (AP) virtual monoenergetic images (VMIs; 40, 70, 100, 120, and 150 keV), while deep learning models utilized ResNet50/101/152 architectures with iodine maps. A combined model integrating optimal Rad-score, DL-score, and clinical features was established. Model performance was assessed via area under the receiver operating characteristic curve analysis (AUC), with SHapley Additive exPlanations (SHAP) framework applied for interpretability. A total of 196 patients were enrolled in this study (training cohort: n=158; testing cohort: n=38). The 100 keV machine learning model demonstrated superior performance (AUC=0.751) compared to other VMIs. The deep learning model based on the ResNet101 method (AUC=0.791) performed better than other approaches. The hybrid model combining Rad-score-100keV-A, Rad-score-100keV-V, DL-score-ResNet101-A, DL-score-ResNet101-V, and clinical features exhibited the best performance (AUC=0.798) among all models. DECT holds promise for predicting ER after BACE among NSCLC patients who have failed first-line therapy, offering valuable guidance for clinical treatment planning.

Guo Y, Fang Q, Li Y, Yang D, Chen L, Bai G

pubmed logopapersAug 9 2025
We developed a machine learning model comprising morphological characteristics, enhancement dynamics, and extracellular volume (ECV) fractions for distinguishing malignant and benign small renal masses (SRMs), supporting personalised management. This retrospective analysis involved 230 patients who underwent SRM resection with preoperative imaging, including 185 internal and 45 external cases. The internal cohort was split into training (n=136) and validation (n=49) sets. Histopathological evaluation categorised the lesions as renal cell carcinomas (n=183) or benign masses (n=47). Eleven multiphasic contrast-enhanced computed tomography (CT) parameters, including the ECV fraction, were manually measured, along with clinical and laboratory data. Feature selection involved univariate analysis and least absolute shrinkage and selection operator regularisation. Feature selection informed various machine learning classifiers, and performance was evaluated using receiver operating characteristic curves and classification tests. The optimal model was interpreted using SHapley Additive exPlanations (SHAP). The analysis included 183 carcinoma and 47 benign SRM cases. Feature selection identified seven discriminative parameters, including the ECV fraction, which informed multiple machine learning models. The Extreme Gradient Boosting model incorporating ECV exhibited optimal performance in distinguishing malignant and benign SRMs, achieving area under the curve values of 0.993 (internal training set), 0.986 (internal validation set), and 0.951 (external test set). SHAP analysis confirmed ECV as the top contributor to SRM characterisation. The integration of multiphase contrast-enhanced CT-derived ECV fraction with conventional contrast-enhanced CT parameters demonstrated diagnostic efficacy in differentiating malignant and benign SRMs.

Mota BS, Shimizu C, Reis YN, Gonçalves R, Soares Junior JM, Baracat EC, Filassi JR

pubmed logopapersAug 9 2025
This review synthesizes current evidence regarding optimal breast cancer screening strategies for women with dense breasts, a population at increased risk due to decreased mammographic sensitivity. A systematic literature review was performed in accordance with PRISMA criteria, covering MEDLINE, EMBASE, CINAHL Plus, Scopus, and Web of Science until May 2025. The analysis examines advanced imaging techniques such as digital breast tomosynthesis (DBT), contrast-enhanced spectral mammography (CESM), ultrasound, and magnetic resonance imaging (MRI), assessing their effectiveness in addressing the shortcomings of traditional mammography in dense breast tissue. The review rigorously evaluates the incorporation of risk stratification models, such as the BCSC, in customizing screening regimens, in conjunction with innovative technologies like liquid biopsy and artificial intelligence-based image analysis for improved risk prediction. A key emphasis is placed on the heterogeneity in international screening guidelines and the challenges in translating research findings to diverse clinical settings, particularly in resource-constrained environments. The discussion includes ethical implications regarding compulsory breast density notification and the possibility of intensifying disparities in health care. The review ultimately encourages the development of evidence-based, context-specific guidelines that facilitate equitable access to effective breast cancer screening for all women with dense breasts.

Anindya Bijoy Das, Shahnewaz Karim Sakib, Shibbir Ahmed

arxiv logopreprintAug 9 2025
Large Language Models (LLMs) are increasingly applied to medical imaging tasks, including image interpretation and synthetic image generation. However, these models often produce hallucinations, which are confident but incorrect outputs that can mislead clinical decisions. This study examines hallucinations in two directions: image to text, where LLMs generate reports from X-ray, CT, or MRI scans, and text to image, where models create medical images from clinical prompts. We analyze errors such as factual inconsistencies and anatomical inaccuracies, evaluating outputs using expert informed criteria across imaging modalities. Our findings reveal common patterns of hallucination in both interpretive and generative tasks, with implications for clinical reliability. We also discuss factors contributing to these failures, including model architecture and training data. By systematically studying both image understanding and generation, this work provides insights into improving the safety and trustworthiness of LLM driven medical imaging systems.

Yiran Huang, Amirhossein Nouranizadeh, Christine Ahrends, Mengjia Xu

arxiv logopreprintAug 9 2025
Functional Magnetic Resonance Imaging (fMRI) is an imaging technique widely used to study human brain activity. fMRI signals in areas across the brain transiently synchronise and desynchronise their activity in a highly structured manner, even when an individual is at rest. These functional connectivity dynamics may be related to behaviour and neuropsychiatric disease. To model these dynamics, temporal brain connectivity representations are essential, as they reflect evolving interactions between brain regions and provide insight into transient neural states and network reconfigurations. However, conventional graph neural networks (GNNs) often struggle to capture long-range temporal dependencies in dynamic fMRI data. To address this challenge, we propose BrainATCL, an unsupervised, nonparametric framework for adaptive temporal brain connectivity learning, enabling functional link prediction and age estimation. Our method dynamically adjusts the lookback window for each snapshot based on the rate of newly added edges. Graph sequences are subsequently encoded using a GINE-Mamba2 backbone to learn spatial-temporal representations of dynamic functional connectivity in resting-state fMRI data of 1,000 participants from the Human Connectome Project. To further improve spatial modeling, we incorporate brain structure and function-informed edge attributes, i.e., the left/right hemispheric identity and subnetwork membership of brain regions, enabling the model to capture biologically meaningful topological patterns. We evaluate our BrainATCL on two tasks: functional link prediction and age estimation. The experimental results demonstrate superior performance and strong generalization, including in cross-session prediction scenarios.

Gian Mario Favero, Ge Ya Luo, Nima Fathi, Justin Szeto, Douglas L. Arnold, Brennan Nichyporuk, Chris Pal, Tal Arbel

arxiv logopreprintAug 9 2025
Image-based personalized medicine has the potential to transform healthcare, particularly for diseases that exhibit heterogeneous progression such as Multiple Sclerosis (MS). In this work, we introduce the first treatment-aware spatio-temporal diffusion model that is able to generate future masks demonstrating lesion evolution in MS. Our voxel-space approach incorporates multi-modal patient data, including MRI and treatment information, to forecast new and enlarging T2 (NET2) lesion masks at a future time point. Extensive experiments on a multi-centre dataset of 2131 patient 3D MRIs from randomized clinical trials for relapsing-remitting MS demonstrate that our generative model is able to accurately predict NET2 lesion masks for patients across six different treatments. Moreover, we demonstrate our model has the potential for real-world clinical applications through downstream tasks such as future lesion count and location estimation, binary lesion activity classification, and generating counterfactual future NET2 masks for several treatments with different efficacies. This work highlights the potential of causal, image-based generative models as powerful tools for advancing data-driven prognostics in MS.

Melika Filvantorkaman, Mohsen Piri, Maral Filvan Torkaman, Ashkan Zabihi, Hamidreza Moradi

arxiv logopreprintAug 9 2025
Accurate and interpretable classification of brain tumors from magnetic resonance imaging (MRI) is critical for effective diagnosis and treatment planning. This study presents an ensemble-based deep learning framework that combines MobileNetV2 and DenseNet121 convolutional neural networks (CNNs) using a soft voting strategy to classify three common brain tumor types: glioma, meningioma, and pituitary adenoma. The models were trained and evaluated on the Figshare dataset using a stratified 5-fold cross-validation protocol. To enhance transparency and clinical trust, the framework integrates an Explainable AI (XAI) module employing Grad-CAM++ for class-specific saliency visualization, alongside a symbolic Clinical Decision Rule Overlay (CDRO) that maps predictions to established radiological heuristics. The ensemble classifier achieved superior performance compared to individual CNNs, with an accuracy of 91.7%, precision of 91.9%, recall of 91.7%, and F1-score of 91.6%. Grad-CAM++ visualizations revealed strong spatial alignment between model attention and expert-annotated tumor regions, supported by Dice coefficients up to 0.88 and IoU scores up to 0.78. Clinical rule activation further validated model predictions in cases with distinct morphological features. A human-centered interpretability assessment involving five board-certified radiologists yielded high Likert-scale scores for both explanation usefulness (mean = 4.4) and heatmap-region correspondence (mean = 4.0), reinforcing the framework's clinical relevance. Overall, the proposed approach offers a robust, interpretable, and generalizable solution for automated brain tumor classification, advancing the integration of deep learning into clinical neurodiagnostics.

Shisheng Zhang, Ramtin Gharleghi, Sonit Singh, Daniel Moses, Dona Adikari, Arcot Sowmya, Susann Beier

arxiv logopreprintAug 9 2025
Coronary artery disease (CAD) remains the leading cause of death globally, with computed tomography coronary angiography (CTCA) serving as a key diagnostic tool. However, coronary arterial analysis using CTCA, such as identifying artery-specific features from computational modelling, is labour-intensive and time-consuming. Automated anatomical labelling of coronary arteries offers a potential solution, yet the inherent anatomical variability of coronary trees presents a significant challenge. Traditional knowledge-based labelling methods fall short in leveraging data-driven insights, while recent deep-learning approaches often demand substantial computational resources and overlook critical clinical knowledge. To address these limitations, we propose a lightweight method that integrates anatomical knowledge with rule-based topology constraints for effective coronary artery labelling. Our approach achieves state-of-the-art performance on benchmark datasets, providing a promising alternative for automated coronary artery labelling.
Page 280 of 6596585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.