Sort by:
Page 28 of 33329 results

Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis.

Kobayashi N, Nakaura T, Yoshida N, Nagayama Y, Kidoh M, Uetani H, Sakabe D, Kawamata Y, Funama Y, Tsutsumi T, Hirai T

pubmed logopapersJun 1 2025
The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data. We retrospectively analyzed scan data of adult patients who underwent body CT during two periods relative to DLR implementation at our facility: a 12-month pre-DLR phase (n = 5553) using hybrid iterative reconstruction and a 12-month post-DLR phase (n = 5494) with routine CT reconstruction transitioning to DLR. To ensure comparability between two groups, we employed propensity score matching 1:1 based on age, sex, and body mass index. Dose data were collected to estimate organ-specific equivalent doses and total effective doses. We assessed the average dose reduction post-DLR implementation and estimated the Lifetime Attributable Risk (LAR) for cancer per CT exam pre- and post-DLR implementation. The number of radiation-induced cancers before and after the implementation of DLR was also estimated. After propensity score matching, 5247 cases from each group were included in the final analysis. Post-DLR, the total effective body CT dose significantly decreased to 15.5 ± 10.3 mSv from 28.1 ± 14.0 mSv pre-DLR (p < 0.001), a 45% reduction. This dose reduction significantly lowered the radiation-induced cancer risk, especially among younger women, with the estimated annual cancer incidence from 0.247% pre-DLR to 0.130% post-DLR. The implementation of DLR has the possibility to reduce radiation dose by 45% and the risk of radiation-induced cancer from 0.247 to 0.130% as compared with the iterative reconstruction. Question Can implementing deep learning reconstruction (DLR) in routine CT scans significantly reduce radiation dose and the risk of radiation-induced cancer compared to hybrid iterative reconstruction? Findings DLR reduced the total effective body CT dose by 45% (from 28.1 ± 14.0 mSv to 15.5 ± 10.3 mSv) and decreased estimated cancer incidence from 0.247 to 0.130%. Clinical relevance Adopting DLR in clinical practice substantially lowers radiation exposure and cancer risk from CT exams, enhancing patient safety, especially for younger women, and underscores the importance of advanced imaging techniques.

Empowering PET imaging reporting with retrieval-augmented large language models and reading reports database: a pilot single center study.

Choi H, Lee D, Kang YK, Suh M

pubmed logopapersJun 1 2025
The potential of Large Language Models (LLMs) in enhancing a variety of natural language tasks in clinical fields includes medical imaging reporting. This pilot study examines the efficacy of a retrieval-augmented generation (RAG) LLM system considering zero-shot learning capability of LLMs, integrated with a comprehensive database of PET reading reports, in improving reference to prior reports and decision making. We developed a custom LLM framework with retrieval capabilities, leveraging a database of over 10 years of PET imaging reports from a single center. The system uses vector space embedding to facilitate similarity-based retrieval. Queries prompt the system to generate context-based answers and identify similar cases or differential diagnoses. From routine clinical PET readings, experienced nuclear medicine physicians evaluated the performance of system in terms of the relevance of queried similar cases and the appropriateness score of suggested potential diagnoses. The system efficiently organized embedded vectors from PET reports, showing that imaging reports were accurately clustered within the embedded vector space according to the diagnosis or PET study type. Based on this system, a proof-of-concept chatbot was developed and showed the framework's potential in referencing reports of previous similar cases and identifying exemplary cases for various purposes. From routine clinical PET readings, 84.1% of the cases retrieved relevant similar cases, as agreed upon by all three readers. Using the RAG system, the appropriateness score of the suggested potential diagnoses was significantly better than that of the LLM without RAG. Additionally, it demonstrated the capability to offer differential diagnoses, leveraging the vast database to enhance the completeness and precision of generated reports. The integration of RAG LLM with a large database of PET imaging reports suggests the potential to support clinical practice of nuclear medicine imaging reading by various tasks of AI including finding similar cases and deriving potential diagnoses from them. This study underscores the potential of advanced AI tools in transforming medical imaging reporting practices.

Combining Multifrequency Magnetic Resonance Elastography With Automatic Segmentation to Assess Renal Function in Patients With Chronic Kidney Disease.

Liang Q, Lin H, Li J, Luo P, Qi R, Chen Q, Meng F, Qin H, Qu F, Zeng Y, Wang W, Lu J, Huang B, Chen Y

pubmed logopapersJun 1 2025
Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability. To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity. Prospective. A total of 179 participants consisting of 95 healthy volunteers and 84 participants with CKD. 3 T, single shot spin echo planar imaging sequence. Participants were randomly assigned into training (n = 58), validation (n = 15), and test (n = 106) sets. Test set included 47 healthy volunteers and 58 CKD participants with different stages (21 stage 1-2, 22 stage 3, and 16 stage 4-5) based on estimated glomerular filtration rate (eGFR). Shear wave speed (SWS) values from mMRE was measured using automatic segmentation constructed through the nnU-Net deep-learning network. Standard manual segmentation was created by a radiologist. In the test set, the automatically segmented renal SWS were compared between healthy volunteers and CKD subgroups, with age as a covariate. The association between SWS and eGFR was investigated in participants with CKD. Dice similarity coefficient (DSC), analysis of covariance, Pearson and Spearman correlation analyses. P < 0.05 was considered statistically significant. Mean DSCs between standard manual and automatic segmentation were 0.943, 0.901, and 0.970 for the renal cortex, medulla, and parenchyma, respectively. The automatically quantified cortical, medullary, and parenchymal SWS were significantly correlated with eGFR (r = 0.620, 0.605, and 0.640, respectively). Participants with CKD stage 1-2 exhibited significantly lower cortical SWS values compared to healthy volunteers (2.44 ± 0.16 m/second vs. 2.56 ± 0.17 m/second), after adjusting age. mMRE combined with automatic segmentation revealed abnormal renal stiffness in patients with CKD, even with mild renal impairment. The renal stiffness of patients with chronic kidney disease varies according to the function and structure of the kidney. This study integrates multifrequency magnetic resonance elastography with automated segmentation technique to assess renal stiffness in patients with chronic kidney disease. The findings indicate that this method is capable of distinguishing between patients with chronic kidney disease, including those with mild renal impairment, while simultaneously reducing the subjectivity and time required for radiologists to analyze images. This research enhances the efficiency of image processing for radiologists and assists nephrologists in detecting early-stage damage in patients with chronic kidney disease. 2 TECHNICAL EFFICACY: Stage 2.

Ultra-fast biparametric MRI in prostate cancer assessment: Diagnostic performance and image quality compared to conventional multiparametric MRI.

Pausch AM, Filleböck V, Elsner C, Rupp NJ, Eberli D, Hötker AM

pubmed logopapersJun 1 2025
To compare the diagnostic performance and image quality of a deep-learning-assisted ultra-fast biparametric MRI (bpMRI) with the conventional multiparametric MRI (mpMRI) for the diagnosis of clinically significant prostate cancer (csPCa). This prospective single-center study enrolled 123 biopsy-naïve patients undergoing conventional mpMRI and additionally ultra-fast bpMRI at 3 T between 06/2023-02/2024. Two radiologists (R1: 4 years and R2: 3 years of experience) independently assigned PI-RADS scores (PI-RADS v2.1) and assessed image quality (mPI-QUAL score) in two blinded study readouts. Weighted Cohen's Kappa (κ) was calculated to evaluate inter-reader agreement. Diagnostic performance was analyzed using clinical data and histopathological results from clinically indicated biopsies. Inter-reader agreement was good for both mpMRI (κ = 0.83) and ultra-fast bpMRI (κ = 0.87). Both readers demonstrated high sensitivity (≥94 %/≥91 %, R1/R2) and NPV (≥96 %/≥95 %) for csPCa detection using both protocols. The more experienced reader mostly showed notably higher specificity (≥77 %/≥53 %), PPV (≥62 %/≥45 %), and diagnostic accuracy (≥82 %/≥65 %) compared to the less experienced reader. There was no significant difference in the diagnostic performance of correctly identifying csPCa between both protocols (p > 0.05). The ultra-fast bpMRI protocol had significantly better image quality ratings (p < 0.001) and achieved a reduction in scan time of 80 % compared to conventional mpMRI. Deep-learning-assisted ultra-fast bpMRI protocols offer a promising alternative to conventional mpMRI for diagnosing csPCa in biopsy-naïve patients with comparable inter-reader agreement and diagnostic performance at superior image quality. However, reader experience remains essential for diagnostic performance.

Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning.

Wang H, Wang Y, Xue Q, Zhang Y, Qiao X, Lin Z, Zheng J, Zhang Z, Yang Y, Zhang M, Huang Q, Huang Y, Cao T, Wang J, Li B

pubmed logopapersJun 1 2025
To address the challenges of verifying MR-based attenuation correction (MRAC) in PET/MR due to CT positional mismatches and alignment issues, this study utilized a flatbed insert and arms-down positioning during PET/CT scans to achieve precise MR-CT matching for accurate MRAC evaluation. A validation dataset of 21 patients underwent whole-body [<sup>18</sup>F]FDG PET/CT followed by [<sup>18</sup>F]FDG PET/MR. A flatbed insert ensured consistent positioning, allowing direct comparison of four MRAC methods-four-tissue and five-tissue models with discrete and continuous μ-maps-against CT-based attenuation correction (CTAC). A deep learning-based framework, trained on a dataset of 300 patients, was used to generate synthesized-CTs from MR images, forming the basis for all MRAC methods. Quantitative analyses were conducted at the whole-body, region of interest, and lesion levels, with lesion-distance analysis evaluating the impact of bone proximity on standardized uptake value (SUV) quantification. Distinct differences were observed among MRAC methods in spine and femur regions. Joint histogram analysis showed MRAC-4 (continuous μ-map) closely aligned with CTAC. Lesion-distance analysis revealed MRAC-4 minimized bone-induced SUV interference (r = 0.01, p = 0.8643). However, tissues prone to bone segmentation interference, such as the spine and liver, exhibited greater SUV variability and lower reproducibility in MRAC-4 compared to MRAC-2 (2D bone segmentation, discrete μ-map) and MRAC-3 (3D bone segmentation, discrete μ-map). Using a flatbed insert, this study validated MRAC with high precision. Continuous μ-value MRAC method (MRAC-4) demonstrated superior accuracy and minimized bone-related SUV errors but faced challenges in reproducibility, particularly in bone-rich regions.

Human-AI collaboration for ultrasound diagnosis of thyroid nodules: a clinical trial.

Edström AB, Makouei F, Wennervaldt K, Lomholt AF, Kaltoft M, Melchiors J, Hvilsom GB, Bech M, Tolsgaard M, Todsen T

pubmed logopapersJun 1 2025
This clinical trial examined how the articifial intelligence (AI)-based diagnostics system S-Detect for Thyroid influences the ultrasound diagnostic work-up of thyroid ultrasound (US) performed by different US users in clinical practice and how different US users influences the diagnostic accuracy of S-Detect. We conducted a clinical trial with 20 participants, including medical students, US novice physicians, and US experienced physicians. Five patients with thyroid nodules (one malignant and four benign) volunteered to undergo a thyroid US scan performed by all 20 participants using the same US systems with S-Detect installed. Participants performed a focused thyroid US on each patient case and made a nodule classification according to the European Thyroid Imaging Reporting And Data System (EU-TIRADS). They then performed a S-Detect analysis of the same nodule and were asked to re-evaluate their EU-TIRADS reporting. From the EU-TIRADS assessments by participants, we derived a biopsy recommendation outcome of whether fine needle aspiration biopsy (FNAB) was recommended. The mean diagnostic accuracy for S-Detect was 71.3% (range 40-100%) among all participants, with no significant difference between the groups (p = 0.31). The accuracy of our biopsy recommendation outcome was 69.8% before and 69.2% after AI for all participants (p = 0.75). In this trial, we did not find S-Detect to improve the thyroid diagnostic work-up in clinical practice among novice and intermediate ultrasound operators. However, the operator had a substantial impact on the AI-generated ultrasound diagnosis, with a variation in diagnostic accuracy from 40 to 100%, despite the same patients and ultrasound machines being used in the trial.

Deep learning enabled near-isotropic CAIPIRINHA VIBE in the nephrogenic phase improves image quality and renal lesion conspicuity.

Tan Q, Miao J, Nitschke L, Nickel MD, Lerchbaumer MH, Penzkofer T, Hofbauer S, Peters R, Hamm B, Geisel D, Wagner M, Walter-Rittel TC

pubmed logopapersJun 1 2025
Deep learning (DL) accelerated controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), provides high spatial resolution T1-weighted imaging of the upper abdomen. We aimed to investigate whether DL-CAIPIRINHA-VIBE can improve image quality, vessel conspicuity, and lesion detectability compared to a standard CAIPIRINHA-VIBE in renal imaging at 3 Tesla. In this prospective study, 50 patients with 23 solid and 45 cystic renal lesions underwent MRI with clinical MR sequences, including standard CAIPIRINHA-VIBE and DL-CAIPIRINHA-VIBE sequences in the nephrographic phase at 3 Tesla. Two experienced radiologists independently evaluated both sequences and multiplanar reconstructions (MPR) of the sagittal and coronal planes for image quality with a Likert scale ranging from 1 to 5 (5 =best). Quantitative measurements including the size of the largest lesion and renal lesion contrast ratios were evaluated. DL-CAIPIRINHA-VIBE compared to standard CAIPIRINHA-VIBE showed significantly improved overall image quality, higher scores for renal border delineation, renal sinuses, vessels, adrenal glands, reduced motion artifacts and reduced perceived noise in nephrographic phase images (all p < 0.001). DL-CAIPIRINHA-VIBE with MPR showed superior lesion conspicuity and diagnostic confidence compared to standard CAIPIRINHA-VIBE. However, DL-CAIPIRINHA-VIBE presented a more synthetic appearance and more aliasing artifacts (p < 0.023). The mean size and signal intensity of renal lesions for DL-CAIPIRINHA-VIBE showed no significant differences compared to standard CAIPIRINHA-VIBE (p > 0.9). DL-CAIPIRINHA-VIBE is well suited for kidney imaging in the nephrographic phase, provides good image quality, improved delineation of anatomic structures and renal lesions.

Artificial intelligence driven plaque characterization and functional assessment from CCTA using OCT-based automation: A prospective study.

Han J, Wang Z, Chen T, Liu S, Tan J, Sun Y, Feng L, Zhang D, Ma L, Liu H, Tao H, Fang C, Yu H, Zeng M, Jia H, Yu B

pubmed logopapersJun 1 2025
We aimed to develop and validate an Artificial Intelligence (AI) model that leverages CCTA and optical coherence tomography (OCT) images for automated analysis of plaque characteristics and coronary function. A total of 100 patients who underwent invasive coronary angiography, OCT, and CCTA before discharge were included in this study. The data were randomly divided into a training set (80 %) and a test set (20 %). The training set, comprising 21,471 tomography images, was used to train a deep-learning convolutional neural network. Subsequently, the AI model was integrated with flow reserve score calculation software developed by Ruixin Medical. The results from the test set demonstrated excellent agreement between the AI model and OCT analysis for calcified plaque (McNemar test, p = 0.683), non-calcified plaque (McNemar test, p = 0.752), mixed plaque (McNemar test, p = 1.000), and low-attenuation plaque (McNemar test, p = 1.000). Additionally, there was excellent agreement for deep learning-derived minimum lumen diameter (intraclass correlation coefficient [ICC] 0.91, p < 0.001), mean vessel diameter (ICC 0.88, p < 0.001), and percent diameter stenosis (ICC 0.82, p < 0.001). In diagnosing >50 % coronary stenosis, the diagnostic accuracy of the AI model surpassed that of conventional CCTA (AUC 0.98 vs. 0.76, p = 0.008). When compared with quantitative flow fraction, there was excellent agreement between QFR and AI-derived CT-FFR (ICC 0.745, p < 0.0001). Our AI model effectively provides automated analysis of plaque characteristics from CCTA images, with the analysis results showing strong agreement with OCT findings. Moreover, the CT-FFR automatically analyzed by the AI model exhibits high consistency with QFR derived from coronary angiography.

CT-derived fractional flow reserve on therapeutic management and outcomes compared with coronary CT angiography in coronary artery disease.

Qian Y, Chen M, Hu C, Wang X

pubmed logopapersJun 1 2025
To determine the value of on-site deep learning-based CT-derived fractional flow reserve (CT-FFR) for therapeutic management and adverse clinical outcomes in patients suspected of coronary artery disease (CAD) compared with coronary CT angiography (CCTA) alone. This single-centre prospective study included consecutive patients suspected of CAD between June 2021 and September 2021 at our hospital. Four hundred and sixty-one patients were randomized into either CT-FFR+CCTA or CCTA-alone group. The first endpoint was the invasive coronary angiography (ICA) efficiency, defined as the ICA with nonobstructive disease (stenosis <50%) and the ratio of revascularization to ICA (REV-to-ICA ratio) within 90 days. The second endpoint was the incidence of major adverse cardiaovascular events (MACE) at 2 years. A total of 461 patients (267 [57.9%] men; median age, 64 [55-69]) were included. At 90 days, the rate of ICA with nonobstructive disease in the CT-FFR+CCTA group was lower than in the CCTA group (14.7% vs 34.0%, P=.047). The REV-to-ICA ratio in the CT-FFR+CCTA group was significantly higher than in the CCTA group (73.5% vs. 50.9%, P=.036). No significant difference in ICA efficiency was found in intermediate stenosis (25%-69%) between the 2 groups (all P>.05). After a median follow-up of 23 (22-24) months, MACE were observed in 11 patients in the CT-FFR+CCTA group and 24 in the CCTA group (5.9% vs 10.0%, P=.095). The on-site deep learning-based CT-FFR improved the efficiency of ICA utilization with a similarly low rate of MACE compared with CCTA alone. The on-site deep learning-based CT-FFR was superior to CCTA for therapeutic management.
Page 28 of 33329 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.