Sort by:
Page 276 of 3463455 results

An Explainable Deep Learning Framework for Brain Stroke and Tumor Progression via MRI Interpretation

Rajan Das Gupta, Md Imrul Hasan Showmick, Mushfiqur Rahman Abir, Shanjida Akter, Md. Yeasin Rahat, Md. Jakir Hossen

arxiv logopreprintJun 10 2025
Early and accurate detection of brain abnormalities, such as tumors and strokes, is essential for timely intervention and improved patient outcomes. In this study, we present a deep learning-based system capable of identifying both brain tumors and strokes from MRI images, along with their respective stages. We have executed two groundbreaking strategies involving convolutional neural networks, MobileNet V2 and ResNet-50-optimized through transfer learning to classify MRI scans into five diagnostic categories. Our dataset, aggregated and augmented from various publicly available MRI sources, was carefully curated to ensure class balance and image diversity. To enhance model generalization and prevent overfitting, we applied dropout layers and extensive data augmentation. The models achieved strong performance, with training accuracy reaching 93\% and validation accuracy up to 88\%. While ResNet-50 demonstrated slightly better results, Mobile Net V2 remains a promising option for real-time diagnosis in low resource settings due to its lightweight architecture. This research offers a practical AI-driven solution for early brain abnormality detection, with potential for clinical deployment and future enhancement through larger datasets and multi modal inputs.

Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis

Jingguo Qu, Xinyang Han, Tonghuan Xiao, Jia Ai, Juan Wu, Tong Zhao, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Ying

arxiv logopreprintJun 10 2025
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at https://github.com/jinggqu/NextGen-UIA.

MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding

Shivang Chopra, Gabriela Sanchez-Rodriguez, Lingchao Mao, Andrew J Feola, Jing Li, Zsolt Kira

arxiv logopreprintJun 10 2025
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.

DWI-based Biologically Interpretable Radiomic Nomogram for Predicting 1- year Biochemical Recurrence after Radical Prostatectomy: A Deep Learning, Multicenter Study.

Niu X, Li Y, Wang L, Xu G

pubmed logopapersJun 10 2025
It is not rare to experience a biochemical recurrence (BCR) following radical prostatectomy (RP) for prostate cancer (PCa). It has been reported that early detection and management of BCR following surgery could improve survival in PCa. This study aimed to develop a nomogram integrating deep learning-based radiomic features and clinical parameters to predict 1-year BCR after RP and to examine the associations between radiomic scores and the tumor microenvironment (TME). In this retrospective multicenter study, two independent cohorts of patients (n = 349) who underwent RP after multiparametric magnetic resonance imaging (mpMRI) between January 2015 and January 2022 were included in the analysis. Single-cell RNA sequencing data from four prospectively enrolled participants were used to investigate the radiomic score-related TME. The 3D U-Net was trained and optimized for prostate cancer segmentation using diffusion-weighted imaging, and radiomic features of the target lesion were extracted. Predictive nomograms were developed via multivariate Cox proportional hazard regression analysis. The nomograms were assessed for discrimination, calibration, and clinical usefulness. In the development cohort, the clinical-radiomic nomogram had an AUC of 0.892 (95% confidence interval: 0.783--0.939), which was considerably greater than those of the radiomic signature and clinical model. The Hosmer-Lemeshow test demonstrated that the clinical-radiomic model performed well in both the development (P = 0.461) and validation (P = 0.722) cohorts. Decision curve analysis revealed that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone in both cohorts. Radiomic scores were associated with a significant difference in the TME pattern. Our study demonstrated the feasibility of a DWI-based clinical-radiomic nomogram combined with deep learning for the prediction of 1-year BCR. The findings revealed that the radiomic score was associated with a distinctive tumor microenvironment.

RadGPT: A system based on a large language model that generates sets of patient-centered materials to explain radiology report information.

Herwald SE, Shah P, Johnston A, Olsen C, Delbrouck JB, Langlotz CP

pubmed logopapersJun 10 2025
The Cures Act Final Rule requires that patients have real-time access to their radiology reports, which contain technical language. Our objective to was to use a novel system called RadGPT, which integrates concept extraction and a large language model (LLM), to help patients understand their radiology reports. RadGPT generated 150 concept explanations and 390 question-and-answer pairs from 30 radiology report impressions from between 2012 and 2020. The extracted concepts were used to create concept-based explanations, as well as concept-based question-and-answer pairs where questions were generated using either a fixed template or an LLM. Additionally, report-based question-and-answer pairs were generated directly from the impression using an LLM without concept extraction. One board-certified radiologist and 4 radiology residents rated the material quality using a standardized rubric. Concept-based LLM-generated questions were significantly higher quality than concept-based template-generated questions (p < 0.001). Excluding those template-based question-and-answer pairs from further analysis, nearly all (> 95%) of RadGPT-generated materials were rated highly, with at least 50% receiving the highest possible ranking from all 5 raters. No answers or explanations were rated as likely to affect the safety or effectiveness of patient care. Report-level LLM-based questions and answers were rated particularly highly, with 92% of report-level LLM-based questions and 61% of the corresponding report-level answers receiving the highest rating from all raters. The educational tool RadGPT generated high-quality explanations and question-and-answer pairs that were personalized for each radiology report, unlikely to produce harmful explanations and likely to enhance patient understanding of radiology information.

Foundation Models in Medical Imaging -- A Review and Outlook

Vivien van Veldhuizen, Vanessa Botha, Chunyao Lu, Melis Erdal Cesur, Kevin Groot Lipman, Edwin D. de Jong, Hugo Horlings, Clárisa I. Sanchez, Cees G. M. Snoek, Lodewyk Wessels, Ritse Mann, Eric Marcus, Jonas Teuwen

arxiv logopreprintJun 10 2025
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.

Ultrasound Radiomics and Dual-Mode Ultrasonic Elastography Based Machine Learning Model for the Classification of Benign and Malignant Thyroid Nodules.

Yan J, Zhou X, Zheng Q, Wang K, Gao Y, Liu F, Pan L

pubmed logopapersJun 9 2025
The present study aims to construct a random forest (RF) model based on ultrasound radiomics and elastography, offering a new approach for the differentiation of thyroid nodules (TNs). We retrospectively analyzed 152 TNs from 127 patients and developed four machine learning models. The examination was performed using the Resona 9Pro equipped with a 15-4 MHz linear array probe. The region of interest (ROI) was delineated with 3D Slicer. Using the RF algorithm, four models were developed based on sound touch elastography (STE) parameters, strain elastography (SE) parameters, and the selected radiomic features: the STE model, SE model, radiomics model, and the combined model. Decision Curve Analysis (DCA) is employed to assess the clinical benefit of each model. The DeLong test is used to determine whether the area under the curves (AUC) values of different models are statistically significant. A total of 1396 radiomic features were extracted using the Pyradiomics package. After screening, a total of 7 radiomic features were ultimately included in the construction of the model. In STE, SE, radiomics model, and combined model, the AUCs are 0.699 (95% CI: 0.570-0.828), 0.812 (95% CI: 0.683-0.941), 0.851 (95% CI: 0.739-0.964) and 0.911 (95% CI: 0.806-1.000), respectively. In these models, the combined model and the radiomics model exhibited outstanding performance. The combined model, integrating elastography and radiomics, demonstrates superior predictive accuracy compared to single models, offering a promising approach for the diagnosis of TNs.

Large Language Models in Medical Diagnostics: Scoping Review With Bibliometric Analysis.

Su H, Sun Y, Li R, Zhang A, Yang Y, Xiao F, Duan Z, Chen J, Hu Q, Yang T, Xu B, Zhang Q, Zhao J, Li Y, Li H

pubmed logopapersJun 9 2025
The integration of large language models (LLMs) into medical diagnostics has garnered substantial attention due to their potential to enhance diagnostic accuracy, streamline clinical workflows, and address health care disparities. However, the rapid evolution of LLM research necessitates a comprehensive synthesis of their applications, challenges, and future directions. This scoping review aimed to provide an overview of the current state of research regarding the use of LLMs in medical diagnostics. The study sought to answer four primary subquestions, as follows: (1) Which LLMs are commonly used? (2) How are LLMs assessed in diagnosis? (3) What is the current performance of LLMs in diagnosing diseases? (4) Which medical domains are investigating the application of LLMs? This scoping review was conducted according to the Joanna Briggs Institute Manual for Evidence Synthesis and adheres to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews). Relevant literature was searched from the Web of Science, PubMed, Embase, IEEE Xplore, and ACM Digital Library databases from 2022 to 2025. Articles were screened and selected based on predefined inclusion and exclusion criteria. Bibliometric analysis was performed using VOSviewer to identify major research clusters and trends. Data extraction included details on LLM types, application domains, and performance metrics. The field is rapidly expanding, with a surge in publications after 2023. GPT-4 and its variants dominated research (70/95, 74% of studies), followed by GPT-3.5 (34/95, 36%). Key applications included disease classification (text or image-based), medical question answering, and diagnostic content generation. LLMs demonstrated high accuracy in specialties like radiology, psychiatry, and neurology but exhibited biases in race, gender, and cost predictions. Ethical concerns, including privacy risks and model hallucination, alongside regulatory fragmentation, were critical barriers to clinical adoption. LLMs hold transformative potential for medical diagnostics but require rigorous validation, bias mitigation, and multimodal integration to address real-world complexities. Future research should prioritize explainable artificial intelligence frameworks, specialty-specific optimization, and international regulatory harmonization to ensure equitable and safe clinical deployment.

Automated detection of spinal bone marrow oedema in axial spondyloarthritis: training and validation using two large phase 3 trial datasets.

Jamaludin A, Windsor R, Ather S, Kadir T, Zisserman A, Braun J, Gensler LS, Østergaard M, Poddubnyy D, Coroller T, Porter B, Ligozio G, Readie A, Machado PM

pubmed logopapersJun 9 2025
To evaluate the performance of machine learning (ML) models for the automated scoring of spinal MRI bone marrow oedema (BMO) in patients with axial spondyloarthritis (axSpA) and compare them with expert scoring. ML algorithms using SpineNet software were trained and validated on 3483 spinal MRIs from 686 axSpA patients across two clinical trial datasets. The scoring pipeline involved (i) detection and labelling of vertebral bodies and (ii) classification of vertebral units for the presence or absence of BMO. Two models were tested: Model 1, without manual segmentation, and Model 2, incorporating an intermediate manual segmentation step. Model outputs were compared with those of human experts using kappa statistics, balanced accuracy, sensitivity, specificity, and AUC. Both models performed comparably to expert readers, regarding presence vs absence of BMO. Model 1 outperformed Model 2, with an AUC of 0.94 (vs 0.88), accuracy of 75.8% (vs 70.5%), and kappa of 0.50 (vs 0.31), using absolute reader consensus scoring as the external reference; this performance was similar to the expert inter-reader accuracy of 76.8% and kappa of 0.47, in a radiographic axSpA dataset. In a non-radiographic axSpA dataset, Model 1 achieved an AUC of 0.97 (vs 0.91 for Model 2), accuracy of 74.6% (vs 70%), and kappa of 0.52 (vs 0.27), comparable to the expert inter-reader accuracy of 74.2% and kappa of 0.46. ML software shows potential for automated MRI BMO assessment in axSpA, offering benefits such as improved consistency, reduced labour costs, and minimised inter- and intra-reader variability. Clinicaltrials.gov, MEASURE 1 study (NCT01358175); PREVENT study (NCT02696031).

Multi-task and multi-scale attention network for lymph node metastasis prediction in esophageal cancer.

Yi Y, Wang J, Li Z, Wang L, Ding X, Zhou Q, Huang Y, Li B

pubmed logopapersJun 9 2025
The accurate diagnosis of lymph node metastasis in esophageal squamous cell carcinoma is crucial in the treatment workflow, and the process is often time-consuming for clinicians. Recent deep learning models predicting whether lymph nodes are affected by cancer in esophageal cancer cases suffer from challenging node delineation and hence gain poor diagnosis accuracy. This paper proposes an innovative multi-task and multi-scale attention network (M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet) to predict lymph node metastasis precisely. The network softly expands the regions of the node mask and subsequently utilizes the expanded mask to aggregate image features, thereby amplifying the node contexts. It additionally proposes a two-branch training strategy that compels the model to simultaneously predict metastasis probability and node masks, fostering a more comprehensive learning process. The node metastasis prediction performance has been evaluated on a self-collected dataset with 177 patients. Our model finally achieves a competitive accuracy of 83.7% on the test set comprising 577 nodes. With the adaptability to intricate patterns and ability to handle data variations, M <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ANet emerges as a promising tool for robust and comprehensive lymph node metastasis prediction in medical image analysis.
Page 276 of 3463455 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.