Sort by:
Page 27 of 35341 results

Development and interpretation of a pathomics-based model for the prediction of immune therapy response in colorectal cancer.

Luo Y, Tian Q, Xu L, Zeng D, Zhang H, Zeng T, Tang H, Wang C, Chen Y

pubmed logopapersMay 31 2025
Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer-related deaths worldwide, with a 5-year survival rate below 20 %. Immunotherapy, particularly immune checkpoint blockade (ICB)-based therapies, has become an important approach for CRC treatment. However, only specific patient subsets demonstrate significant clinical benefits. Although the TIDE algorithm can predict immunotherapy responses, the reliance on transcriptome sequencing data limits its clinical applicability. Recent advances in artificial intelligence and computational pathology provide new avenues for medical image analysis.In this study, we classified TCGA-CRC samples into immunotherapy responder and non-responder groups using the TIDE algorithm. Further, a pathomics model based on convolutional neural networks was constructed to directly predict immunotherapy responses from histopathological images. Single-cell analysis revealed that fibroblasts may induce immunotherapy resistance in CRC through collagen-CD44 and ITGA1 + ITGB1 signaling axes. The developed pathomics model demonstrated excellent classification performance in the test set, with an AUC of 0.88 at the patch level and 0.85 at the patient level. Moreover, key pathomics features were identified through SHAP analysis. This innovative predictive tool provides a novel method for clinical decision-making in CRC immunotherapy, with potential to optimize treatment strategies and advance precision medicine.

LiDSCUNet++: A lightweight depth separable convolutional UNet++ for vertebral column segmentation and spondylosis detection.

Agrawal KK, Kumar G

pubmed logopapersMay 31 2025
Accurate computer-aided diagnosis systems rely on precise segmentation of the vertebral column to assist physicians in diagnosing various disorders. However, segmenting spinal disks and bones becomes challenging in the presence of abnormalities and complex anatomical structures. While Deep Convolutional Neural Networks (DCNNs) achieve remarkable results in medical image segmentation, their performance is limited by data insufficiency and the high computational complexity of existing solutions. This paper introduces LiDSCUNet++, a lightweight deep learning framework based on depthwise-separable and pointwise convolutions integrated with UNet++ for vertebral column segmentation. The model segments vertebral anomalies from dog radiographs, and the results are further processed by YOLOv8 for automated detection of Spondylosis Deformans. LiDSCUNet++ delivers comparable segmentation performance while significantly reducing trainable parameters, memory usage, energy consumption, and computational time, making it an efficient and practical solution for medical image analysis.

HVAngleEst: A Dataset for End-to-end Automated Hallux Valgus Angle Measurement from X-Ray Images.

Wang Q, Ji D, Wang J, Liu L, Yang X, Zhang Y, Liang J, Liu P, Zhao H

pubmed logopapersMay 30 2025
Accurate measurement of hallux valgus angle (HVA) and intermetatarsal angle (IMA) is essential for diagnosing hallux valgus and determining appropriate treatment strategies. Traditional manual measurement methods, while standardized, are time-consuming, labor-intensive, and subject to evaluator bias. Recent advancements in deep learning have been applied to hallux valgus angle estimation, but the development of effective algorithms requires large, well-annotated datasets. Existing X-ray datasets are typically limited to cropped foot regions images, and only one dataset containing very few samples is publicly available. To address these challenges, we introduce HVAngleEst, the first large-scale, open-access dataset specifically designed for hallux valgus angle estimation. HVAngleEst comprises 1,382 X-ray images from 1,150 patients and includes comprehensive annotations, such as foot localization, hallux valgus angles, and line segments for each phalanx. This dataset enables fully automated, end-to-end hallux valgus angle estimation, reducing manual labor and eliminating evaluator bias.

A conditional point cloud diffusion model for deformable liver motion tracking via a single arbitrarily-angled x-ray projection.

Xie J, Shao HC, Li Y, Yan S, Shen C, Wang J, Zhang Y

pubmed logopapersMay 30 2025
Deformable liver motion tracking using a single X-ray projection enables real-time motion monitoring and treatment intervention. We introduce a conditional point cloud diffusion model-based framework for accurate and robust liver motion tracking from arbitrarily angled single X-ray projections. We propose a conditional point cloud diffusion model for liver motion tracking (PCD-Liver), which estimates volumetric liver motion by solving deformable vector fields (DVFs) of a prior liver surface point cloud, based on a single X-ray image. It is a patient-specific model of two main components: a rigid alignment model to estimate the liver's overall shifts, and a conditional point cloud diffusion model that further corrects for the liver surface's deformation. Conditioned on the motion-encoded features extracted from a single X-ray projection by a geometry-informed feature pooling layer, the diffusion model iteratively solves detailed liver surface DVFs in a projection angle-agnostic fashion. The liver surface motion solved by PCD-Liver is subsequently fed as the boundary condition into a UNet-based biomechanical model to infer the liver's internal motion to localize liver tumors. A dataset of 10 liver cancer patients was used for evaluation. We used the root mean square error (RMSE) and 95-percentile Hausdorff distance (HD95) metrics to examine the liver point cloud motion estimation accuracy, and the center-of-mass error (COME) to quantify the liver tumor localization error. The mean (±s.d.) RMSE, HD95, and COME of the prior liver or tumor before motion estimation were 8.82 mm (±3.58 mm), 10.84 mm (±4.55 mm), and 9.72 mm (±4.34 mm), respectively. After PCD-Liver's motion estimation, the corresponding values were 3.63 mm (±1.88 mm), 4.29 mm (±1.75 mm), and 3.46 mm (±2.15 mm). Under highly noisy conditions, PCD-Liver maintained stable performance. This study presents an accurate and robust framework for liver deformable motion estimation and tumor localization for image-guided radiotherapy.

Diagnosis of trigeminal neuralgia based on plain skull radiography using convolutional neural network.

Han JH, Ji SY, Kim M, Kwon JE, Park JB, Kang H, Hwang K, Kim CY, Kim T, Jeong HG, Ahn YH, Chung HT

pubmed logopapersMay 29 2025
This study aimed to determine whether trigeminal neuralgia can be diagnosed using convolutional neural networks (CNNs) based on plain X-ray skull images. A labeled dataset of 166 skull images from patients aged over 16 years with trigeminal neuralgia was compiled, alongside a control dataset of 498 images from patients with unruptured intracranial aneurysms. The images were randomly partitioned into training, validation, and test datasets in a 6:2:2 ratio. Classifier performance was assessed using accuracy and the area under the receiver operating characteristic (AUROC) curve. Gradient-weighted class activation mapping was applied to identify regions of interest. External validation was conducted using a dataset obtained from another institution. The CNN achieved an overall accuracy of 87.2%, with sensitivity and specificity of 0.72 and 0.91, respectively, and an AUROC of 0.90 on the test dataset. In most cases, the sphenoid body and clivus were identified as key areas for predicting trigeminal neuralgia. Validation on the external dataset yielded an accuracy of 71.0%, highlighting the potential of deep learning-based models in distinguishing X-ray skull images of patients with trigeminal neuralgia from those of control individuals. Our preliminary results suggest that plain x-ray can be potentially used as an adjunct to conventional MRI, ideally with CISS sequences, to aid in the clinical diagnosis of TN. Further refinement could establish this approach as a valuable screening tool.

Exploring best-performing radiomic features with combined multilevel discrete wavelet decompositions for multiclass COVID-19 classification using chest X-ray images.

Özcan H

pubmed logopapersMay 29 2025
Discrete wavelet transforms have been applied in many machine learning models for the analysis of COVID-19; however, little is known about the impact of combined multilevel wavelet decompositions for the disease identification. This study proposes a computer-aided diagnosis system for addressing the combined multilevel effects of multiscale radiomic features on multiclass COVID-19 classification using chest X-ray images. A two-level discrete wavelet transform was applied to an optimal region of interest to obtain multiscale decompositions. Both approximation and detail coefficients were extensively investigated in varying frequency bands through 1240 experimental models. High dimensionality in the feature space was managed using a proposed filter- and wrapper-based feature selection approach. A comprehensive comparison was conducted between the bands and features to explore best-performing ensemble algorithm models. The results indicated that incorporating multilevel decompositions could lead to improved model performance. An inclusive region of interest, encompassing both lungs and the mediastinal regions, was identified to enhance feature representation. The light gradient-boosting machine, applied on combined bands with the features of basic, gray-level, Gabor, histogram of oriented gradients and local binary patterns, achieved the highest weighted precision, sensitivity, specificity, and accuracy of 97.50 %, 97.50 %, 98.75 %, and 97.50 %, respectively. The COVID-19-versus-the-rest receiver operating characteristic area under the curve was 0.9979. These results underscore the potential of combining decomposition levels with the original signals and employing an inclusive region of interest for effective COVID-19 detection, while the feature selection and training processes remain efficient within a practical computational time.

Interpreting Chest X-rays Like a Radiologist: A Benchmark with Clinical Reasoning

Jinquan Guan, Qi Chen, Lizhou Liang, Yuhang Liu, Vu Minh Hieu Phan, Minh-Son To, Jian Chen, Yutong Xie

arxiv logopreprintMay 29 2025
Artificial intelligence (AI)-based chest X-ray (CXR) interpretation assistants have demonstrated significant progress and are increasingly being applied in clinical settings. However, contemporary medical AI models often adhere to a simplistic input-to-output paradigm, directly processing an image and an instruction to generate a result, where the instructions may be integral to the model's architecture. This approach overlooks the modeling of the inherent diagnostic reasoning in chest X-ray interpretation. Such reasoning is typically sequential, where each interpretive stage considers the images, the current task, and the contextual information from previous stages. This oversight leads to several shortcomings, including misalignment with clinical scenarios, contextless reasoning, and untraceable errors. To fill this gap, we construct CXRTrek, a new multi-stage visual question answering (VQA) dataset for CXR interpretation. The dataset is designed to explicitly simulate the diagnostic reasoning process employed by radiologists in real-world clinical settings for the first time. CXRTrek covers 8 sequential diagnostic stages, comprising 428,966 samples and over 11 million question-answer (Q&A) pairs, with an average of 26.29 Q&A pairs per sample. Building on the CXRTrek dataset, we propose a new vision-language large model (VLLM), CXRTrekNet, specifically designed to incorporate the clinical reasoning flow into the VLLM framework. CXRTrekNet effectively models the dependencies between diagnostic stages and captures reasoning patterns within the radiological context. Trained on our dataset, the model consistently outperforms existing medical VLLMs on the CXRTrek benchmarks and demonstrates superior generalization across multiple tasks on five diverse external datasets. The dataset and model can be found in our repository (https://github.com/guanjinquan/CXRTrek).

DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification

Youssef Mohamed, Noran Mohamed, Khaled Abouhashad, Feilong Tang, Sara Atito, Shoaib Jameel, Imran Razzak, Ahmed B. Zaky

arxiv logopreprintMay 29 2025
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL

Estimating Total Lung Volume from Pixel-Level Thickness Maps of Chest Radiographs Using Deep Learning.

Dorosti T, Schultheiss M, Schmette P, Heuchert J, Thalhammer J, Gassert FT, Sellerer T, Schick R, Taphorn K, Mechlem K, Birnbacher L, Schaff F, Pfeiffer F, Pfeiffer D

pubmed logopapersMay 28 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Materials and Methods This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (<i>n</i> = 656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (<i>n</i> = 5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient <b>(r)</b>, and two-sided Student's t-distribution. Results The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates (MSEPublic-Synthetic = 0.16 L<sup>2</sup>, MSEKRI-Synthetic = 0.20 L<sup>2</sup>, MSEKRI-Real = 0.35 L<sup>2</sup>) and strong correlations with CT-derived reference standard TLV (nPublic-Synthetic = 1,191, r = 0.99, <i>P</i> < .001; nKRI-Synthetic = 72, r = 0.97, <i>P</i> < .001; nKRI-Real = 72, r = 0.91, <i>P</i> < .001). When evaluated on different datasets, the U-Net model achieved the highest performance for TLV estimation on the Luna16 test dataset, with the lowest mean squared error (MSE = 0.09 L<sup>2</sup>) and strongest correlation (<i>r</i> = 0.99, <i>P</i> <.001) compared with CT-derived TLV. Conclusion The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs. ©RSNA, 2025.

An AI system for continuous knee osteoarthritis severity grading: An anomaly detection inspired approach with few labels.

Belton N, Lawlor A, Curran KM

pubmed logopapersMay 28 2025
The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
Page 27 of 35341 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.