Sort by:
Page 27 of 33329 results

External validation and performance analysis of a deep learning-based model for the detection of intracranial hemorrhage.

Nada A, Sayed AA, Hamouda M, Tantawi M, Khan A, Alt A, Hassanein H, Sevim BC, Altes T, Gaballah A

pubmed logopapersJun 1 2025
PurposeWe aimed to investigate the external validation and performance of an FDA-approved deep learning model in labeling intracranial hemorrhage (ICH) cases on a real-world heterogeneous clinical dataset. Furthermore, we delved deeper into evaluating how patients' risk factors influenced the model's performance and gathered feedback on satisfaction from radiologists of varying ranks.MethodsThis prospective IRB approved study included 5600 non-contrast CT scans of the head in various clinical settings, that is, emergency, inpatient, and outpatient units. The patients' risk factors were collected and tested for impacting the performance of DL model utilizing univariate and multivariate regression analyses. The performance of DL model was contrasted to the radiologists' interpretation to determine the presence or absence of ICH with subsequent classification into subcategories of ICH. Key metrics, including accuracy, sensitivity, specificity, positive predictive value, and negative predictive value, were calculated. Receiver operating characteristics curve, along with the area under the curve, were determined. Additionally, a questionnaire was conducted with radiologists of varying ranks to assess their experience with the model.ResultsThe model exhibited outstanding performance, achieving a high sensitivity of 89% and specificity of 96%. Additional performance metrics, including positive predictive value (82%), negative predictive value (97%), and overall accuracy (94%), underscore its robust capabilities. The area under the ROC curve further demonstrated the model's efficacy, reaching 0.954. Multivariate logistic regression revealed statistical significance for age, sex, history of trauma, operative intervention, HTN, and smoking.ConclusionOur study highlights the satisfactory performance of the DL model on a diverse real-world dataset, garnering positive feedback from radiology trainees.

Structural and metabolic topological alterations associated with butylphthalide treatment in mild cognitive impairment: Data from a randomized, double-blind, placebo-controlled trial.

Han X, Gong S, Gong J, Wang P, Li R, Chen R, Xu C, Sun W, Li S, Chen Y, Yang Y, Luan H, Wen B, Guo J, Lv S, Wei C

pubmed logopapersJun 1 2025
Effective intervention for mild cognitive impairment (MCI) is key for preventing dementia. As a neuroprotective agent, butylphthalide has the potential to treat MCI due to Alzheimer disease (AD). However, the pharmacological mechanism of butylphthalide from the brain network perspective is not clear. Therefore, we aimed to investigate the multimodal brain network changes associated with butylphthalide treatment in MCI due to AD. A total of 270 patients with MCI due to AD received either butylphthalide or placebo at a ratio of 1:1 for 1 year. Effective treatment was defined as a decrease in the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog) > 2.5. Brain networks were constructed using T1-magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. A support vector machine was applied to develop predictive models. Both treatment (drug vs. placebo)-time interactions and efficacy (effective vs. ineffective)-time interactions were detected on some overlapping structural network metrics. Simple effects analyses revealed a significantly increased global efficiency in the structural network under both treatment and effective treatment of butylphthalide. Among the overlapping metrics, an increased degree centrality of left paracentral lobule was significantly related to poorer cognitive improvement. The predictive model based on baseline multimodal network metrics exhibited high accuracy (88.93%) of predicting butylphthalide's efficacy. Butylphthalide may restore abnormal organization in structural networks of patients with MCI due to AD, and baseline network metrics could be predictive markers for therapeutic efficacy of butylphthalide. This study was registered in the Chinese Clinical Trial Registry (Registration Number: ChiCTR1800018362, Registration Date: 2018-09-13).

A new method for placental volume measurements using tracked 2D ultrasound and automatic image segmentation.

Sagberg K, Lie T, F Peterson H, Hillestad V, Eskild A, Bø LE

pubmed logopapersJun 1 2025
Placental volume measurements can potentially identify high-risk pregnancies. We aimed to develop and validate a new method for placental volume measurements using tracked 2D ultrasound and automatic image segmentation. We included 43 pregnancies at gestational week 27 and acquired placental images using a 2D ultrasound probe with position tracking, and trained a convolutional neural network (CNN) for automatic image segmentation. The automatically segmented 2D images were combined with tracking data to calculate placental volume. For 15 of the included pregnancies, placental volume was also estimated based on MRI examinations, 3D ultrasound and manually segmented 2D ultrasound images. The ultrasound methods were compared to MRI (gold standard). The CNN demonstrated good performance in automatic image segmentation (F1-score 0.84). The correlation with MRI-based placental volume was similar for tracked 2D ultrasound using automatically segmented images (absolute agreement intraclass correlation coefficient [ICC] 0.58, 95% CI 0.13-0.84) and manually segmented images (ICC 0.59, 95% CI 0.13-0.84). The 3D ultrasound method showed lower ICC (0.35, 95% CI -0.11 to 0.74) than the methods based on tracked 2D ultrasound. Tracked 2D ultrasound with automatic image segmentation is a promising new method for placental volume measurements and has potential for further improvement.

Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction.

Mesropyan N, Katemann C, Leutner C, Sommer A, Isaak A, Weber OM, Peeters JM, Dell T, Bischoff L, Kuetting D, Pieper CC, Lakghomi A, Luetkens JA

pubmed logopapersJun 1 2025
To assess the performance of an industry-developed deep learning (DL) algorithm to reconstruct low-resolution Cartesian T1-weighted dynamic contrast-enhanced (T1w) and T2-weighted turbo-spin-echo (T2w) sequences and compare them to standard sequences. Female patients with indications for breast MRI were included in this prospective study. The study protocol at 1.5 Tesla MRI included T1w and T2w. Both sequences were acquired in standard resolution (T1<sub>S</sub> and T2<sub>S</sub>) and in low-resolution with following DL reconstructions (T1<sub>DL</sub> and T2<sub>DL</sub>). For DL reconstruction, two convolutional networks were used: (1) Adaptive-CS-Net for denoising with compressed sensing, and (2) Precise-Image-Net for resolution upscaling of previously downscaled images. Overall image quality was assessed using 5-point-Likert scale (from 1=non-diagnostic to 5=excellent). Apparent signal-to-noise (aSNR) and contrast-to-noise (aCNR) ratios were calculated. Breast Imaging Reporting and Data System (BI-RADS) agreement between different sequence types was assessed. A total of 47 patients were included (mean age, 58±11 years). Acquisition time for T1<sub>DL</sub> and T2<sub>DL</sub> were reduced by 51% (44 vs. 90 s per dynamic phase) and 46% (102 vs. 192 s), respectively. T1<sub>DL</sub> and T2<sub>DL</sub> showed higher overall image quality (e.g., 4 [IQR, 4-4] for T1<sub>S</sub> vs. 5 [IQR, 5-5] for T1<sub>DL</sub>, P<0.001). Both, T1<sub>DL</sub> and T2<sub>DL</sub> revealed higher aSNR and aCNR than T1<sub>S</sub> and T2<sub>S</sub> (e.g., aSNR: 32.35±10.23 for T2<sub>S</sub> vs. 27.88±6.86 for T2<sub>DL</sub>, P=0.014). Cohen k agreement by BI-RADS assessment was excellent (0.962, P<0.001). DL for denoising and resolution upscaling reduces acquisition time and improves image quality for T1w and T2w breast MRI.

Deep Learning-Enhanced Ultra-high-resolution CT Imaging for Superior Temporal Bone Visualization.

Brockstedt L, Grauhan NF, Kronfeld A, Mercado MAA, Döge J, Sanner A, Brockmann MA, Othman AE

pubmed logopapersJun 1 2025
This study assesses the image quality of temporal bone ultra-high-resolution (UHR) Computed tomography (CT) scans in adults and children using hybrid iterative reconstruction (HIR) and a novel, vendor-specific deep learning-based reconstruction (DLR) algorithm called AiCE Inner Ear. In a retrospective, single-center study (February 1-July 30, 2023), UHR-CT scans of 57 temporal bones of 35 patients (5 children, 23 male) with at least one anatomical unremarkable temporal bone were included. There is an adult computed tomography dose index volume (CTDIvol 25.6 mGy) and a pediatric protocol (15.3 mGy). Images were reconstructed using HIR at normal resolution (0.5-mm slice thickness, 512² matrix) and UHR (0.25-mm, 1024² and 2048² matrix) as well as with a vendor-specific DLR advanced intelligent clear-IQ engine inner ear (AiCE Inner Ear) at UHR (0.25-mm, 1024² matrix). Three radiologists evaluated 18 anatomic structures using a 5-point Likert scale. Signal-to-noise (SNR) and contrast-to-noise ratio (CNR) were measured automatically. In the adult protocol subgroup (n=30; median age: 51 [11-89]; 19 men) and the pediatric protocol subgroup (n=5; median age: 2 [1-3]; 4 men), UHR-CT with DLR significantly improved subjective image quality (p<0.024), reduced noise (p<0.001), and increased CNR and SNR (p<0.001). DLR also enhanced visualization of key structures, including the tendon of the stapedius muscle (p<0.001), tympanic membrane (p<0.009), and basal aspect of the osseous spiral lamina (p<0.018). Vendor-specific DLR-enhanced UHR-CT significantly improves temporal bone image quality and diagnostic performance.

Axial Skeletal Assessment in Osteoporosis Using Radiofrequency Echographic Multi-spectrometry: Diagnostic Performance, Clinical Utility, and Future Directions.

As'ad M

pubmed logopapersJun 1 2025
Osteoporosis, a prevalent skeletal disorder, necessitates accurate and accessible diagnostic tools for effective disease management and fracture prevention. While dual-energy X-ray absorptiometry (DXA) remains the clinical standard for bone mineral density (BMD) assessment, its limitations, including ionizing radiation exposure and susceptibility to artifacts, underscore the need for alternative technologies. Ultrasound-based methods have emerged as promising radiation-free alternatives, with radiofrequency echographic multi-spectrometry (REMS) representing a significant advancement in axial skeleton assessment, specifically at the lumbar spine and proximal femur. REMS analyzes unfiltered radiofrequency ultrasound signals, providing not only BMD estimates but also a novel fragility score (FS), which reflects bone quality and microarchitectural integrity. This review critically evaluates the underlying principles, diagnostic performance, and clinical applications of REMS. It compares REMS with DXA, quantitative computed tomography (QCT), and trabecular bone score (TBS), highlighting REMS's potential advantages in artifact-prone scenarios and specific populations, including children and patients with secondary osteoporosis. The clinical utility of REMS in fracture risk prediction and therapy monitoring is explored alongside its operational precision, cost-effectiveness, and portability. In addition, the integration of artificial intelligence (AI) within REMS software has enhanced its capacity for artifact exclusion and automated spectral interpretation, improving usability and reproducibility. Current limitations, such as the need for broader validation and guideline inclusion, are identified, and future research directions are proposed. These include multicenter validation studies, development of pediatric and secondary osteoporosis reference models, and deeper evaluation of AI-driven enhancements. REMS offers a compelling, non-ionizing alternative for axial bone health assessment and may significantly advance the diagnostic landscape for osteoporosis care.

Deep learning-based acceleration of high-resolution compressed sense MR imaging of the hip.

Marka AW, Meurer F, Twardy V, Graf M, Ebrahimi Ardjomand S, Weiss K, Makowski MR, Gersing AS, Karampinos DC, Neumann J, Woertler K, Banke IJ, Foreman SC

pubmed logopapersJun 1 2025
To evaluate a Compressed Sense Artificial Intelligence framework (CSAI) incorporating parallel imaging, compressed sense (CS), and deep learning for high-resolution MRI of the hip, comparing it with standard-resolution CS imaging. Thirty-two patients with femoroacetabular impingement syndrome underwent 3 T MRI scans. Coronal and sagittal intermediate-weighted TSE sequences with fat saturation were acquired using CS (0.6 ×0.8 mm resolution) and CSAI (0.3 ×0.4 mm resolution) protocols in comparable acquisition times (7:49 vs. 8:07 minutes for both planes). Two readers systematically assessed the depiction of the acetabular and femoral cartilage (in five cartilage zones), labrum, ligamentum capitis femoris, and bone using a five-point Likert scale. Diagnostic confidence and abnormality detection were recorded and analyzed using the Wilcoxon signed-rank test. CSAI significantly improved the cartilage depiction across most cartilage zones compared to CS. Overall Likert scores were 4.0 ± 0.2 (CS) vs 4.2 ± 0.6 (CSAI) for reader 1 and 4.0 ± 0.2 (CS) vs 4.3 ± 0.6 (CSAI) for reader 2 (p ≤ 0.001). Diagnostic confidence increased from 3.5 ± 0.7 and 3.9 ± 0.6 (CS) to 4.0 ± 0.6 and 4.1 ± 0.7 (CSAI) for readers 1 and 2, respectively (p ≤ 0.001). More cartilage lesions were detected with CSAI, with significant improvements in diagnostic confidence in certain cartilage zones such as femoral zone C and D for both readers. Labrum and ligamentum capitis femoris depiction remained similar, while bone depiction was rated lower. No abnormalities detected in CS were missed in CSAI. CSAI provides high-resolution hip MR images with enhanced cartilage depiction without extending acquisition times, potentially enabling more precise hip cartilage assessment.

Deep Learning-Assisted Diagnosis of Malignant Cerebral Edema Following Endovascular Thrombectomy.

Song Y, Hong J, Liu F, Liu J, Chen Y, Li Z, Su J, Hu S, Fu J

pubmed logopapersJun 1 2025
Malignant cerebral edema (MCE) is a significant complication following endovascular thrombectomy (EVT) in the treatment of acute ischemic stroke. This study aimed to develop and validate a deep learning-assisted diagnosis model based on the hyperattenuated imaging marker (HIM), characterized by hyperattenuation on head non-contrast computed tomography immediately after thrombectomy, to facilitate radiologists in predicting MCE in patients receiving EVT. This study included 271 patients, with 168 in the training cohort, 43 in the validation cohort, and 60 in the prospective internal test cohort. Deep learning models including ResNet 50, ResNet 101, ResNeXt50_32×4d, ResNeXt101_32×8d, and DenseNet 121 were constructed. The performance of senior and junior radiologists with and without optimal model assistance was compared. ResNeXt101_32×8d had the best predictive performance, the analysis of the receiver operating characteristic curve indicated an area under the curve (AUC) of 0.897 for the prediction of MCE in the validation group and an AUC of 0.889 in the test group. Moreover, with the assistance of the model, radiologists exhibited a significant improvement in diagnostic performance, the AUC increased by 0.137 for the junior radiologist and 0.096 for the junior radiologist respectively. Our study utilized the ResNeXt-101 neural network, combined with HIM, to validate a deep learning model for predicting MCE post-EVT. The developed deep learning model demonstrated high discriminative ability, and can serve as a valuable adjunct to radiologists in clinical practice.

Effect of Deep Learning Image Reconstruction on Image Quality and Pericoronary Fat Attenuation Index.

Mei J, Chen C, Liu R, Ma H

pubmed logopapersJun 1 2025
To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m<sup>2</sup>), 80 kV (24 kg/m<sup>2</sup> ≤ BMI < 28 kg/m<sup>2</sup>), 100 kV (BMI ≥ 28 kg/m<sup>2</sup>). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.

Deep learning-enhanced zero echo time MRI for glenohumeral assessment in shoulder instability: a comparative study with CT.

Carretero-Gómez L, Fung M, Wiesinger F, Carl M, McKinnon G, de Arcos J, Mandava S, Arauz S, Sánchez-Lacalle E, Nagrani S, López-Alcorocho JM, Rodríguez-Íñigo E, Malpica N, Padrón M

pubmed logopapersJun 1 2025
To evaluate image quality and lesion conspicuity of zero echo time (ZTE) MRI reconstructed with deep learning (DL)-based algorithm versus conventional reconstruction and to assess DL ZTE performance against CT for bone loss measurements in shoulder instability. Forty-four patients (9 females; 33.5 ± 15.65 years) with symptomatic anterior glenohumeral instability and no previous shoulder surgery underwent ZTE MRI and CT on the same day. ZTE images were reconstructed with conventional and DL methods and post-processed for CT-like contrast. Two musculoskeletal radiologists, blinded to the reconstruction method, independently evaluated 20 randomized MR ZTE datasets with and without DL-enhancement for perceived signal-to-noise ratio, resolution, and lesion conspicuity at humerus and glenoid using a 4-point Likert scale. Inter-reader reliability was assessed using weighted Cohen's kappa (K). An ordinal logistic regression model analyzed Likert scores, with the reconstruction method (DL-enhanced vs. conventional) as the predictor. Glenoid track (GT) and Hill-Sachs interval (HSI) measurements were performed by another radiologist on both DL ZTE and CT datasets. Intermodal agreement was assessed through intraclass correlation coefficients (ICCs) and Bland-Altman analysis. DL ZTE MR bone images scored higher than conventional ZTE across all items, with significantly improved perceived resolution (odds ratio (OR) = 7.67, p = 0.01) and glenoid lesion conspicuity (OR = 25.12, p = 0.01), with substantial inter-rater agreement (K = 0.61 (0.38-0.83) to 0.77 (0.58-0.95)). Inter-modality assessment showed almost perfect agreement between DL ZTE MR and CT for all bone measurements (overall ICC = 0.99 (0.97-0.99)), with mean differences of 0.08 (- 0.80 to 0.96) mm for GT and - 0.07 (- 1.24 to 1.10) mm for HSI. DL-based reconstruction enhances ZTE MRI quality for glenohumeral assessment, offering osseous evaluation and quantification equivalent to gold-standard CT, potentially simplifying preoperative workflow, and reducing CT radiation exposure.
Page 27 of 33329 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.