Sort by:
Page 265 of 3423416 results

Incorporating Radiologist Knowledge Into MRI Quality Metrics for Machine Learning Using Rank-Based Ratings.

Tang C, Eisenmenger LB, Rivera-Rivera L, Huo E, Junn JC, Kuner AD, Oechtering TH, Peret A, Starekova J, Johnson KM

pubmed logopapersJun 1 2025
Deep learning (DL) often requires an image quality metric; however, widely used metrics are not designed for medical images. To develop an image quality metric that is specific to MRI using radiologists image rankings and DL models. Retrospective. A total of 19,344 rankings on 2916 unique image pairs from the NYU fastMRI Initiative neuro database was used for the neural network-based image quality metrics training with an 80%/20% training/validation split and fivefold cross-validation. 1.5 T and 3 T T1, T1 postcontrast, T2, and FLuid Attenuated Inversion Recovery (FLAIR). Synthetically corrupted image pairs were ranked by radiologists (N = 7), with a subset also scoring images using a Likert scale (N = 2). DL models were trained to match rankings using two architectures (EfficientNet and IQ-Net) with and without reference image subtraction and compared to ranking based on mean squared error (MSE) and structural similarity (SSIM). Image quality assessing DL models were evaluated as alternatives to MSE and SSIM as optimization targets for DL denoising and reconstruction. Radiologists' agreement was assessed by a percentage metric and quadratic weighted Cohen's kappa. Ranking accuracies were compared using repeated measurements analysis of variance. Reconstruction models trained with IQ-Net score, MSE and SSIM were compared by paired t test. P < 0.05 was considered significant. Compared to direct Likert scoring, ranking produced a higher level of agreement between radiologists (70.4% vs. 25%). Image ranking was subjective with a high level of intraobserver agreement ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>94.9</mn> <mo>%</mo> <mo>±</mo> <mn>2.4</mn> <mo>%</mo></mrow> </math> ) and lower interobserver agreement ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>61.47</mn> <mo>%</mo> <mo>±</mo> <mn>5.51</mn> <mo>%</mo></mrow> </math> ). IQ-Net and EfficientNet accurately predicted rankings with a reference image ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>75.2</mn> <mo>%</mo> <mo>±</mo> <mn>1.3</mn> <mo>%</mo></mrow> </math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>79.2</mn> <mo>%</mo> <mo>±</mo> <mn>1.7</mn> <mo>%</mo></mrow> </math> ). However, EfficientNet resulted in images with artifacts and high MSE when used in denoising tasks while IQ-Net optimized networks performed well for both denoising and reconstruction tasks. Image quality networks can be trained from image ranking and used to optimize DL tasks. 3 TECHNICAL EFFICACY: Stage 1.

Dual Energy CT for Deep Learning-Based Segmentation and Volumetric Estimation of Early Ischemic Infarcts.

Kamel P, Khalid M, Steger R, Kanhere A, Kulkarni P, Parekh V, Yi PH, Gandhi D, Bodanapally U

pubmed logopapersJun 1 2025
Ischemic changes are not visible on non-contrast head CT until several hours after infarction, though deep convolutional neural networks have shown promise in the detection of subtle imaging findings. This study aims to assess if dual-energy CT (DECT) acquisition can improve early infarct visibility for machine learning. The retrospective dataset consisted of 330 DECTs acquired up to 48 h prior to confirmation of a DWI positive infarct on MRI between 2016 and 2022. Infarct segmentation maps were generated from the MRI and co-registered to the CT to serve as ground truth for segmentation. A self-configuring 3D nnU-Net was trained for segmentation on (1) standard 120 kV mixed-images (2) 190 keV virtual monochromatic images and (3) 120 kV + 190 keV images as dual channel inputs. Algorithm performance was assessed with Dice scores with paired t-tests on a test set. Global aggregate Dice scores were 0.616, 0.645, and 0.665 for standard 120 kV images, 190 keV, and combined channel inputs respectively. Differences in overall Dice scores were statistically significant with highest performance for combined channel inputs (p < 0.01). Small but statistically significant differences were observed for infarcts between 6 and 12 h from last-known-well with higher performance for larger infarcts. Volumetric accuracy trended higher with combined inputs but differences were not statistically significant (p = 0.07). Supplementation of standard head CT images with dual-energy data provides earlier and more accurate segmentation of infarcts for machine learning particularly between 6 and 12 h after last-known-well.

Radiomics-driven spectral profiling of six kidney stone types with monoenergetic CT reconstructions in photon-counting CT.

Hertel A, Froelich MF, Overhoff D, Nestler T, Faby S, Jürgens M, Schmidt B, Vellala A, Hesse A, Nörenberg D, Stoll R, Schmelz H, Schoenberg SO, Waldeck S

pubmed logopapersJun 1 2025
Urolithiasis, a common and painful urological condition, is influenced by factors such as lifestyle, genetics, and medication. Differentiating between different types of kidney stones is crucial for personalized therapy. The purpose of this study is to investigate the use of photon-counting computed tomography (PCCT) in combination with radiomics and machine learning to develop a method for automated and detailed characterization of kidney stones. This approach aims to enhance the accuracy and detail of stone classification beyond what is achievable with conventional computed tomography (CT) and dual-energy CT (DECT). In this ex vivo study, 135 kidney stones were first classified using infrared spectroscopy. All stones were then scanned in a PCCT embedded in a phantom. Various monoenergetic reconstructions were generated, and radiomics features were extracted. Statistical analysis was performed using Random Forest (RF) classifiers for both individual reconstructions and a combined model. The combined model, using radiomics features from all monoenergetic reconstructions, significantly outperformed individual reconstructions and SPP parameters, with an AUC of 0.95 and test accuracy of 0.81 for differentiating all six stone types. Feature importance analysis identified key parameters, including NGTDM_Strength and wavelet-LLH_firstorder_Variance. This ex vivo study demonstrates that radiomics-driven PCCT analysis can improve differentiation between kidney stone subtypes. The combined model outperformed individual monoenergetic levels, highlighting the potential of spectral profiling in PCCT to optimize treatment through image-based strategies. Question How can photon-counting computed tomography (PCCT) combined with radiomics improve the differentiation of kidney stone types beyond conventional CT and dual-energy CT, enhancing personalized therapy? Findings Our ex vivo study demonstrates that a combined spectral-driven radiomics model achieved 95% AUC and 81% test accuracy in differentiating six kidney stone types. Clinical relevance Implementing PCCT-based spectral-driven radiomics allows for precise non-invasive differentiation of kidney stone types, leading to improved diagnostic accuracy and more personalized, effective treatment strategies, potentially reducing the need for invasive procedures and recurrence.

Age-dependent changes in CT vertebral attenuation values in opportunistic screening for osteoporosis: a nationwide multi-center study.

Kim Y, Kim HY, Lee S, Hong S, Lee JW

pubmed logopapersJun 1 2025
To examine how vertebral attenuation changes with aging, and to establish age-adjusted CT attenuation value cutoffs for diagnosing osteoporosis. This multi-center retrospective study included 11,246 patients (mean age ± standard deviation, 50 ± 13 years; 7139 men) who underwent CT and dual-energy X-ray absorptiometry (DXA) in six health-screening centers between 2022 and 2023. Using deep-learning-based software, attenuation values of L1 vertebral bodies were measured. Segmented linear regression in women and simple linear regression in men were used to assess how attenuation values change with aging. A multivariable linear regression analysis was performed to determine whether age is associated with CT attenuation values independently of the DXA T-score. Age-adjusted cutoffs targeting either 90% sensitivity or 90% specificity were derived using quantile regression. Performance of both age-adjusted and age-unadjusted cutoffs was measured, where the target sensitivity or specificity was considered achieved if a 95% confidence interval encompassed 90%. While attenuation values declined consistently with age in men, they declined abruptly in women aged > 42 years. Such decline occurred independently of the DXA T-score (p < 0.001). Age adjustment seemed critical for age ≥ 65 years, where the age-adjusted cutoffs achieved the target (sensitivity of 91.5% (86.3-95.2%) when targeting 90% sensitivity and specificity of 90.0% (88.3-91.6%) when targeting 90% specificity), but age-unadjusted cutoffs did not (95.5% (91.2-98.0%) and 73.8% (71.4-76.1%), respectively). Age-adjusted cutoffs provided a more reliable diagnosis of osteoporosis than age-unadjusted cutoffs since vertebral attenuation values decrease with age, regardless of DXA T-scores. Question How does vertebral CT attenuation change with age? Findings Independent of dual-energy X-ray absorptiometry T-score, vertebral attenuation values on CT declined at a constant rate in men and abruptly in women over 42 years of age. Clinical relevance Age adjustments are needed in opportunistic osteoporosis screening, especially among the elderly.

Parapharyngeal Space: Diagnostic Imaging and Intervention.

Vogl TJ, Burck I, Stöver T, Helal R

pubmed logopapersJun 1 2025
Diagnosis of lesions of the parapharyngeal space (PPS) often poses a diagnostic and therapeutic challenge due to its deep location. As a result of the topographical relationship to nearby neck spaces, a very precise differential diagnosis is possible based on imaging criteria. When in doubt, imaging-guided - usually CT-guided - biopsy and even drainage remain options.Through a precise analysis of the literature including the most recent publications, this review precisely describes the basic and most recent imaging applications for various PPS pathologies and the differential diagnostic scheme for assigning the respective lesions in addition to the possibilities of using interventional radiology.The different pathologies of PPS from congenital malformations and inflammation to tumors are discussed according to frequency. Characteristic criteria and, more recently, the use of advanced imaging procedures and the introduction of artificial intelligence (AI) allow a very precise differential diagnosis and support further diagnosis and therapy. After precise access planning, almost all pathologies of the PPS can be biopsied or, if necessary, drained using CT-assisted procedures.Radiological procedures play an important role in the diagnosis and treatment planning of PPS pathologies. · Lesions of the PPS account for about 1-2% of all pathologies of the head and neck region. The majority are benign lesions and inflammatory processes.. · If differential diagnostic questions remain unanswered, material can - if necessary - be obtained via a CT-guided biopsy. Exclusion criteria are hypervascularized processes, especially paragangliomas and angiomas.. · The use of artificial intelligence (AI) in head and neck imaging of various pathologies, such as tumor segmentation, pathological TMN classification, detection of lymph node metastases, and extranodal extension, has significantly increased in recent years.. · Vogl TJ, Burck I, Stöver T et al. Parapharyngeal Space: Diagnostic Imaging and Intervention. Rofo 2025; 197: 638-646.

The role of deep learning in diagnostic imaging of spondyloarthropathies: a systematic review.

Omar M, Watad A, McGonagle D, Soffer S, Glicksberg BS, Nadkarni GN, Klang E

pubmed logopapersJun 1 2025
Diagnostic imaging is an integral part of identifying spondyloarthropathies (SpA), yet the interpretation of these images can be challenging. This review evaluated the use of deep learning models to enhance the diagnostic accuracy of SpA imaging. Following PRISMA guidelines, we systematically searched major databases up to February 2024, focusing on studies that applied deep learning to SpA imaging. Performance metrics, model types, and diagnostic tasks were extracted and analyzed. Study quality was assessed using QUADAS-2. We analyzed 21 studies employing deep learning in SpA imaging diagnosis across MRI, CT, and X-ray modalities. These models, particularly advanced CNNs and U-Nets, demonstrated high accuracy in diagnosing SpA, differentiating arthritis forms, and assessing disease progression. Performance metrics frequently surpassed traditional methods, with some models achieving AUCs up to 0.98 and matching expert radiologist performance. This systematic review underscores the effectiveness of deep learning in SpA imaging diagnostics across MRI, CT, and X-ray modalities. The studies reviewed demonstrated high diagnostic accuracy. However, the presence of small sample sizes in some studies highlights the need for more extensive datasets and further prospective and external validation to enhance the generalizability of these AI models. Question How can deep learning models improve diagnostic accuracy in imaging for spondyloarthropathies (SpA), addressing challenges in early detection and differentiation from other forms of arthritis? Findings Deep learning models, especially CNNs and U-Nets, showed high accuracy in SpA imaging across MRI, CT, and X-ray, often matching or surpassing expert radiologists. Clinical relevance Deep learning models can enhance diagnostic precision in SpA imaging, potentially reducing diagnostic delays and improving treatment decisions, but further validation on larger datasets is required for clinical integration.

MSLesSeg: baseline and benchmarking of a new Multiple Sclerosis Lesion Segmentation dataset.

Guarnera F, Rondinella A, Crispino E, Russo G, Di Lorenzo C, Maimone D, Pappalardo F, Battiato S

pubmed logopapersMay 31 2025
This paper presents MSLesSeg, a new, publicly accessible MRI dataset designed to advance research in Multiple Sclerosis (MS) lesion segmentation. The dataset comprises 115 scans of 75 patients including T1, T2 and FLAIR sequences, along with supplementary clinical data collected across different sources. Expert-validated annotations provide high-quality lesion segmentation labels, establishing a reliable human-labeled dataset for benchmarking. Part of the dataset was shared with expert scientists with the aim to compare the last automatic AI-based image segmentation solutions with an expert-biased handmade segmentation. In addition, an AI-based lesion segmentation of MSLesSeg was developed and technically validated against the last state-of-the-art methods. The dataset, the detailed analysis of researcher contributions, and the baseline results presented here mark a significant milestone for advancing automated MS lesion segmentation research.

Physician-level classification performance across multiple imaging domains with a diagnostic medical foundation model and a large dataset of annotated medical images

Thieme, A. H., Miri, T., Marra, A. R., Kobayashi, T., Rodriguez-Nava, G., Li, Y., Barba, T., Er, A. G., Benzler, J., Gertler, M., Riechers, M., Hinze, C., Zheng, Y., Pelz, K., Nagaraj, D., Chen, A., Loeser, A., Ruehle, A., Zamboglou, C., Alyahya, L., Uhlig, M., Machiraju, G., Weimann, K., Lippert, C., Conrad, T., Ma, J., Novoa, R., Moor, M., Hernandez-Boussard, T., Alawad, M., Salinas, J. L., Mittermaier, M., Gevaert, O.

medrxiv logopreprintMay 31 2025
A diagnostic medical foundation model (MedFM) is an artificial intelligence (AI) system engineered to accurately determine diagnoses across various medical imaging modalities and specialties. To train MedFM, we created the PubMed Central Medical Images Dataset (PMCMID), the largest annotated medical image dataset to date, comprising 16,126,659 images from 3,021,780 medical publications. Using AI- and ontology-based methods, we identified 4,482,237 medical images (e.g., clinical photos, X-rays, ultrasounds) and generated comprehensive annotations. To optimize MedFMs performance and assess biases, 13,266 images were manually annotated to establish a multimodal benchmark. MedFM achieved physician-level performance in diagnosis tasks spanning radiology, dermatology, and infectious diseases without requiring specific training. Additionally, we developed the Image2Paper app, allowing clinicians to upload medical images and retrieve relevant literature. The correct diagnoses appeared within the top ten results in 88.4% and at least one relevant differential diagnosis in 93.0%. MedFM and PMCMID were made publicly available. FundingResearch reported here was partially supported by the National Cancer Institute (NCI) (R01 CA260271), the Saudi Company for Artificial Intelligence (SCAI) Authority, and the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under the project DAKI-FWS (01MK21009E). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

NeoPred: dual-phase CT AI forecasts pathologic response to neoadjuvant chemo-immunotherapy in NSCLC.

Zheng J, Yan Z, Wang R, Xiao H, Chen Z, Ge X, Li Z, Liu Z, Yu H, Liu H, Wang G, Yu P, Fu J, Zhang G, Zhang J, Liu B, Huang Y, Deng H, Wang C, Fu W, Zhang Y, Wang R, Jiang Y, Lin Y, Huang L, Yang C, Cui F, He J, Liang H

pubmed logopapersMay 31 2025
Accurate preoperative prediction of major pathological response or pathological complete response after neoadjuvant chemo-immunotherapy remains a critical unmet need in resectable non-small-cell lung cancer (NSCLC). Conventional size-based imaging criteria offer limited reliability, while biopsy confirmation is available only post-surgery. We retrospectively assembled 509 consecutive NSCLC cases from four Chinese thoracic-oncology centers (March 2018 to March 2023) and prospectively enrolled 50 additional patients. Three 3-dimensional convolutional neural networks (pre-treatment CT, pre-surgical CT, dual-phase CT) were developed; the best-performing dual-phase model (NeoPred) optionally integrated clinical variables. Model performance was measured by area under the receiver-operating-characteristic curve (AUC) and compared with nine board-certified radiologists. In an external validation set (n=59), NeoPred achieved an AUC of 0.772 (95% CI: 0.650 to 0.895), sensitivity 0.591, specificity 0.733, and accuracy 0.627; incorporating clinical data increased the AUC to 0.787. In a prospective cohort (n=50), NeoPred reached an AUC of 0.760 (95% CI: 0.628 to 0.891), surpassing the experts' mean AUC of 0.720 (95% CI: 0.574 to 0.865). Model assistance raised the pooled expert AUC to 0.829 (95% CI: 0.707 to 0.951) and accuracy to 0.820. Marked performance persisted within radiological stable-disease subgroups (external AUC 0.742, 95% CI: 0.468 to 1.000; prospective AUC 0.833, 95% CI: 0.497 to 1.000). Combining dual-phase CT and clinical variables, NeoPred reliably and non-invasively predicts pathological response to neoadjuvant chemo-immunotherapy in NSCLC, outperforms unaided expert assessment, and significantly enhances radiologist performance. Further multinational trials are needed to confirm generalizability and support surgical decision-making.
Page 265 of 3423416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.