Sort by:
Page 261 of 6596585 results

Smesseim I, Lipman KBWG, Trebeschi S, Stuiver MM, Tissier R, Burgers JA, de Gooijer CJ

pubmed logopapersAug 15 2025
Asbestosis, a rare pneumoconiosis marked by diffuse pulmonary fibrosis, arises from prolonged asbestos exposure. Its diagnosis, guided by the Helsinki criteria, relies on exposure history, clinical findings, radiology, and lung function. However, interobserver variability complicates diagnoses and financial compensation. This study prospectively validated the sensitivity of an AI-driven assessment for asbestosis compensation in the Netherlands. Secondary objectives included evaluating specificity, accuracy, predictive values, area under the curve of the receiver operating characteristic (ROC-AUC), area under the precision-recall curve (PR-AUC), and interobserver variability. Between September 2020 and July 2022, 92 adult compensation applicants were assessed using both AI models and pulmonologists' reviews based on Dutch Health Council criteria. The AI model assigned an asbestosis probability score: negative (< 35), uncertain (35-66), or positive (≥ 66). Uncertain cases underwent additional reviews for a final determination. The AI assessment demonstrated sensitivity of 0.86 (95% confidence interval: 0.77-0.95), specificity of 0.85 (0.76-0.97), accuracy of 0.87 (0.79-0.93), ROC-AUC of 0.92 (0.84-0.97), and PR-AUC of 0.95 (0.89-0.99). Despite strong metrics, the sensitivity target of 98% was unmet. Pulmonologist reviews showed moderate to substantial interobserver variability. The AI-driven approach demonstrated robust accuracy but insufficient sensitivity for validation. Addressing interobserver variability and incorporating objective fibrosis measurements could enhance future reliability in clinical and compensation settings. The AI-driven assessment for financial compensation of asbestosis showed adequate accuracy but did not meet the required sensitivity for validation. We prospectively assessed the sensitivity of an AI-driven assessment procedure for financial compensation of asbestosis. The AI-driven asbestosis probability score underperformed across all metrics compared to internal testing. The AI-driven assessment procedure achieved a sensitivity of 0.86 (95% confidence interval: 0.77-0.95). It did not meet the predefined sensitivity target.

Wang P, Chen X, Yan X, Yan J, Yang S, Mao J, Li F, Su X

pubmed logopapersAug 15 2025
[<sup>18</sup>F]-meta-fluorobenzylguanidine ([<sup>18</sup>F]MFBG) PET/CT is a promising imaging modality for neural crest-derived tumors, particularly neuroblastoma. Accurate interpretation necessitates an understanding of normal biodistribution and variations in physiological uptake. This study aimed to systematically characterize the physiological distribution and variability of [<sup>18</sup>F]MFBG uptake in pediatric patients to enhance clinical interpretation and differentiate normal from pathological uptake. We retrospectively analyzed [<sup>18</sup>F]MFBG PET/CT scans from 169 pediatric neuroblastoma patients, including 20 in confirmed remission, for detailed biodistribution analysis. Organ uptake was quantified using both manual segmentation and deep learning(DL)-based automatic segmentation methods. Patterns of physiological uptake variants were categorized and illustrated using representative cases. [<sup>18</sup>F]MFBG demonstrated consistent physiological uptake in the salivary glands (SUVmax 9.8 ± 3.3), myocardium (7.1 ± 1.7), and adrenal glands (4.6 ± 0.9), with low activity in bone (0.6 ± 0.2) and muscle (0.8 ± 0.2). DL-based analysis confirmed uniform, mild uptake across vertebral and peripheral skeletal structures (SUVmean 0.47 ± 0.08). Three physiological liver uptake patterns were identified: uniform (43%), left-lobe predominant (31%), and marginal (26%). Asymmetric uptake in the pancreatic head, transient brown adipose tissue activity, gallbladder excretion, and symmetric epiphyseal uptake were also recorded. These variants were not associated with structural abnormalities or clinical recurrence and showed distinct patterns from pathological lesions. This study establishes a reference for normal [<sup>18</sup>F]MFBG biodistribution and physiological variants in children. Understanding these patterns is essential for accurate image interpretation and the avoidance of diagnostic pitfalls in pediatric neuroblastoma patients.

Shen Y, Shen Z, Huang Y, Wu Z, Ma Y, Hu F, Shu K

pubmed logopapersAug 15 2025
Epilepsy surgery efficacy is critically contingent upon the precise localization of the epileptogenic zone (EZ). However, conventional qualitative methods face challenges in achieving accurate localization, integrating multimodal data, and accounting for variations in clinical expertise among practitioners. With the rapid advancement of artificial intelligence and computing power, multimodal quantitative analysis has emerged as a pivotal approach for EZ localization. Nonetheless, no research team has thus far provided a systematic elaboration of this concept. This narrative review synthesizes recent advancements across four key dimensions: (1) seizure semiology quantification using deep learning and computer vision to analyze behavioral patterns; (2) structural neuroimaging leveraging high-field MRI, radiomics, and AI; (3) functional imaging integrating EEG-fMRI dynamics and PET biomarkers; and (4) electrophysiological quantification encompassing source localization, intracranial EEG, and network modeling. The convergence of these complementary approaches enables comprehensive characterization of epileptogenic networks across behavioral, structural, functional, and electrophysiological domains. Despite these advancements, clinical heterogeneity, limitations in algorithmic generalizability, and barriers to data sharing hinder translation into clinical practice. Future directions emphasize personalized modeling, federated learning, and cross-modal standardization to advance data-driven localization. This integrated paradigm holds promise for overcoming qualitative limitations, reducing medical costs, and improving seizure-free outcomes.

Lu X, Zhang H, Kuroda H, Garcovich M, de Ledinghen V, Grgurević I, Linghu R, Ding H, Chang J, Wu M, Feng C, Ren X, Liu C, Song T, Meng F, Zhang Y, Fang Y, Ma S, Wang J, Qi X, Tian J, Yang X, Ren J, Liang P, Wang K

pubmed logopapersAug 15 2025
Accurate, noninvasive diagnosis of compensated advanced chronic liver disease (cACLD) is essential for effective clinical management but remains challenging. This study aimed to develop a deep learning-based radiomics model using international multicenter data and to evaluate its performance by comparing it to the two-dimensional shear wave elastography (2D-SWE) cut-off method covering multiple countries or regions, etiologies, and ultrasound device manufacturers. This retrospective study included 1937 adult patients with chronic liver disease due to hepatitis B, hepatitis C, or metabolic dysfunction-associated steatotic liver disease. All patients underwent 2D-SWE imaging and liver biopsy at 17 centers across China, Japan, and Europe using devices from three manufacturers (SuperSonic Imagine, General Electric, and Mindray). The proposed generalized deep learning radiomics of elastography model integrated both elastographic images and liver stiffness measurements and was trained and tested on stratified internal and external datasets. A total of 1937 patients with 9472 2D-SWE images were included in the statistical analysis. Compared to 2D-SWE, the model achieved a higher area under the receiver operating characteristic curve (AUC) (0.89 vs 0.83, P = 0.025). It also achieved a highly consistent diagnosis across all subanalyses (P values: 0.21-0.91), whereas 2D-SWE exhibited different AUCs in the country or region (P < 0.001) and etiology (P = 0.005) subanalyses but not in the manufacturer subanalysis (P = 0.24). The model demonstrated more accurate and robust performance in noninvasive cACLD diagnosis than 2D-SWE across different countries or regions, etiologies, and manufacturers.

Gertz RJ, Beste NC, Dratsch T, Lennartz S, Bremm J, Iuga AI, Bunck AC, Laukamp KR, Schönfeld M, Kottlors J

pubmed logopapersAug 15 2025
This study evaluates the efficiency, accuracy, and cost-effectiveness of radiology reporting using audio multimodal large language models (LLMs) compared to conventional reporting with speech recognition software. We hypothesized that providing minimal audio input would enable a multimodal LLM to generate complete radiological reports. 480 reports from 80 retrospective multimodal imaging studies were reported by two board-certified radiologists using three workflows: conventional workflow (C-WF) with speech recognition software to generate findings and impressions separately and LLM-based workflow (LLM-WF) using the state-of-the-art LLMs GPT-4o and Claude Sonnet 3.5. Outcome measures included reporting time, corrections and personnel cost per report. Two radiologists assessed formal structure and report quality. Statistical analysis used ANOVA and Tukey's post hoc tests (p < 0.05). LLM-WF significantly reduced reporting time (GPT-4o/Sonnet 3.5: 38.9 s ± 22.7 s vs. C-WF: 88.0 s ± 60.9 s, p < 0.01), required fewer corrections (GPT-4o: 1.0 ± 1.1, Sonnet 3.5: 0.9 ± 1.0 vs. C-WF: 2.4 ± 2.5, p < 0.01), and lowered costs (GPT-4o: $2.3 ± $1.4, Sonnet 3.5: $2.4 ± $1.4 vs. C-WF: $3.0 ± $2.1, p < 0.01). Reports generated with Sonnet 3.5 were rated highest in quality, while GPT-4o and conventional reports showed no difference. Multimodal LLMs can generate high-quality radiology reports based solely on minimal audio input, with greater speed, fewer corrections, and reduced costs compared to conventional speech-based workflows. However, future implementation may involve licensing costs, and generalizability to broader clinical contexts warrants further evaluation. Question Comparing time, accuracy, cost, and report quality of reporting using audio input functionality of GPT-4o and Claude Sonnet 3.5 to conventional reporting with speech recognition. Findings Large language models enable radiological reporting via minimal audio input, reducing turnaround time and costs without quality loss compared to conventional reporting with speech recognition. Clinical relevance Large language model-based reporting from minimal audio input has the potential to improve efficiency and report quality, supporting more streamlined workflows in clinical radiology.

Hirakawa H, Yasaka K, Nomura T, Tsujimoto R, Sonoda Y, Kiryu S, Abe O

pubmed logopapersAug 15 2025
This study aimed to examine the performance of a fine-tuned large language model (LLM) in extracting pretreatment pancreatic cancer according to computed tomography (CT) radiology reports and to compare it with that of readers. This retrospective study included 2690, 886, and 378 CT reports for the training, validation, and test datasets, respectively. Clinical indication, image finding, and imaging diagnosis sections of the radiology report (used as input data) were reviewed and categorized into groups 0 (no pancreatic cancer), 1 (after treatment for pancreatic cancer), and 2 (pretreatment pancreatic cancer present) (used as reference data). A pre-trained Bidirectional Encoder Representation from the Transformers Japanese model was fine-tuned with the training and validation dataset. Group 1 data were undersampled and group 2 data were oversampled in the training dataset due to group imbalance. The best-performing model from the validation set was subsequently assessed using the test dataset for testing purposes. Additionally, three readers (readers 1, 2, and 3) were involved in classifying reports within the test dataset. The fine-tuned LLM and readers 1, 2, and 3 demonstrated an overall accuracy of 0.942, 0.984, 0.979, and 0.947; sensitivity for differentiating groups 0/1/2 of 0.944/0.960/0.921, 0.976/1.000/0.976, 0.984/0.984/0.968, and 1.000/1.000/0.841; and total time required for classification of 49 s, 2689 s, 3496 s, and 4887 s, respectively. Fine-tuned LLM effectively extracted patients with pretreatment pancreatic cancer according to CT radiology reports, and its performance was comparable to that of readers in a shorter time.

Ibrar W, Khan MA, Hamza A, Rubab S, Alqahtani O, Alouane MT, Teng S, Nam Y

pubmed logopapersAug 15 2025
In the world, Alzheimer's disease (AD) is the utmost public reason for dementia. AD causes memory loss and disturbing mental function impairment in aging people. The loss of memory and disturbing mental function brings a significant load on patients as well as on society. So far, there is no actual treatment that can cure AD; however, early diagnosis can slow down this disease. Deep learning has shown substantial success in diagnosing AZ disease. However, challenges remain due to limited data, improper model selection, and extraction of irrelevant features. In this work, we proposed a fully automated framework based on the fusion of a vision transformer and a novel inverted residual bottleneck with self-attention (IRBwSA) for AD diagnosis. In the first step, data augmentation was performed to balance the selected dataset. After that, the vision model is designed and modified according to the dataset. Similarly, a new inverted bottleneck self-attention model is developed. The designed models are trained on the augmented dataset, and extracted features are fused using a novel search-based approach. Moreover, the designed models are interpreted using an explainable artificial intelligence technique named LIME. The fused features are finally classified using a shallow wide neural network and other classifiers. The experimental process was conducted on an augmented MRI dataset, and 96.1% accuracy and 96.05% precision rate were obtained. Comparison with a few recent techniques shows the proposed framework's better performance.

Qiang Li, Shansong Wang, Mingzhe Hu, Mojtaba Safari, Zachary Eidex, Xiaofeng Yang

arxiv logopreprintAug 15 2025
Mammogram visual question answering (VQA) integrates image interpretation with clinical reasoning and has potential to support breast cancer screening. We systematically evaluated the GPT-5 family and GPT-4o model on four public mammography datasets (EMBED, InBreast, CMMD, CBIS-DDSM) for BI-RADS assessment, abnormality detection, and malignancy classification tasks. GPT-5 consistently was the best performing model but lagged behind both human experts and domain-specific fine-tuned models. On EMBED, GPT-5 achieved the highest scores among GPT variants in density (56.8%), distortion (52.5%), mass (64.5%), calcification (63.5%), and malignancy (52.8%) classification. On InBreast, it attained 36.9% BI-RADS accuracy, 45.9% abnormality detection, and 35.0% malignancy classification. On CMMD, GPT-5 reached 32.3% abnormality detection and 55.0% malignancy accuracy. On CBIS-DDSM, it achieved 69.3% BI-RADS accuracy, 66.0% abnormality detection, and 58.2% malignancy accuracy. Compared with human expert estimations, GPT-5 exhibited lower sensitivity (63.5%) and specificity (52.3%). While GPT-5 exhibits promising capabilities for screening tasks, its performance remains insufficient for high-stakes clinical imaging applications without targeted domain adaptation and optimization. However, the tremendous improvements in performance from GPT-4o to GPT-5 show a promising trend in the potential for general large language models (LLMs) to assist with mammography VQA tasks.

Zhenhao Li, Long Yang, Xiaojie Yin, Haijun Yu, Jiazhou Wang, Hongbin Han, Weigang Hu, Yixing Huang

arxiv logopreprintAug 15 2025
Computed tomography (CT) is a cornerstone imaging modality for non-invasive, high-resolution visualization of internal anatomical structures. However, when the scanned object exceeds the scanner's field of view (FOV), projection data are truncated, resulting in incomplete reconstructions and pronounced artifacts near FOV boundaries. Conventional reconstruction algorithms struggle to recover accurate anatomy from such data, limiting clinical reliability. Deep learning approaches have been explored for FOV extension, with diffusion generative models representing the latest advances in image synthesis. Yet, conventional diffusion models are computationally demanding and slow at inference due to their iterative sampling process. To address these limitations, we propose an efficient CT FOV extension framework based on the image-to-image Schr\"odinger Bridge (I$^2$SB) diffusion model. Unlike traditional diffusion models that synthesize images from pure Gaussian noise, I$^2$SB learns a direct stochastic mapping between paired limited-FOV and extended-FOV images. This direct correspondence yields a more interpretable and traceable generative process, enhancing anatomical consistency and structural fidelity in reconstructions. I$^2$SB achieves superior quantitative performance, with root-mean-square error (RMSE) values of 49.8\,HU on simulated noisy data and 152.0HU on real data, outperforming state-of-the-art diffusion models such as conditional denoising diffusion probabilistic models (cDDPM) and patch-based diffusion methods. Moreover, its one-step inference enables reconstruction in just 0.19s per 2D slice, representing over a 700-fold speedup compared to cDDPM (135s) and surpassing diffusionGAN (0.58s), the second fastest. This combination of accuracy and efficiency makes I$^2$SB highly suitable for real-time or clinical deployment.

Tao Hong, Umberto Villa, Jeffrey A. Fessler

arxiv logopreprintAug 15 2025
Model-based reconstruction plays a key role in compressed sensing (CS) MRI, as it incorporates effective image regularizers to improve the quality of reconstruction. The Plug-and-Play and Regularization-by-Denoising frameworks leverage advanced denoisers (e.g., convolutional neural network (CNN)-based denoisers) and have demonstrated strong empirical performance. However, their theoretical guarantees remain limited, as practical CNNs often violate key assumptions. In contrast, gradient-driven denoisers achieve competitive performance, and the required assumptions for theoretical analysis are easily satisfied. However, solving the associated optimization problem remains computationally demanding. To address this challenge, we propose a generalized Krylov subspace method (GKSM) to solve the optimization problem efficiently. Moreover, we also establish rigorous convergence guarantees for GKSM in nonconvex settings. Numerical experiments on CS MRI reconstruction with spiral and radial acquisitions validate both the computational efficiency of GKSM and the accuracy of the theoretical predictions. The proposed optimization method is applicable to any linear inverse problem.
Page 261 of 6596585 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.