Sort by:
Page 261 of 3073064 results

Prediction of prognosis of immune checkpoint inhibitors combined with anti-angiogenic agents for unresectable hepatocellular carcinoma by machine learning-based radiomics.

Xu X, Jiang X, Jiang H, Yuan X, Zhao M, Wang Y, Chen G, Li G, Duan Y

pubmed logopapersMay 19 2025
This study aims to develop and validate a novel radiomics model utilizing magnetic resonance imaging (MRI) to predict progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) who are receiving a combination of immune checkpoint inhibitors (ICIs) and antiangiogenic agents. This is an area that has not been previously explored using MRI-based radiomics. 111 patients with uHCC were enrolled in this study. After performing univariate cox regression and the least absolute shrinkage and selection operator (LASSO) algorithms to extract radiological features, the Rad-score was calculated through a Cox proportional hazards regression model and a random survival forest (RSF) model. The optimal calculation method was selected by comparing the Harrell's concordance index (C-index) values. The Rad-score was then combined with independent clinical risk factors to create a nomogram. C-index, time-dependent receiver operating characteristics (ROC) curves, calibration curves, and decision curve analysis were employed to assess the forecast ability of the risk models. The combined nomogram incorporated independent clinical factors and Rad-score calculated by RSF demonstrated better prognosis prediction for PFS, with C-index of 0.846, 0.845, separately in the training and the validation cohorts. This indicates that our model performs well and has the potential to enable more precise patient stratification and personalized treatment strategies. Based on the risk level, the participants were classified into two distinct groups: the high-risk signature (HRS) group and the low-risk signature (LRS) group, with a significant difference between the groups (P < 0.01). The effective clinical-radiomics nomogram based on MRI imaging is a promising tool in predicting the prognosis in uHCC patients receiving ICIs combined with anti-angiogenic agents, potentially leading to more effective clinical outcomes.

Multiple deep learning models based on MRI images in discriminating glioblastoma from solitary brain metastases: a multicentre study.

Kong C, Yan D, Liu K, Yin Y, Ma C

pubmed logopapersMay 19 2025
Development of a deep learning model for accurate preoperative identification of glioblastoma and solitary brain metastases by combining multi-centre and multi-sequence magnetic resonance images and comparison of the performance of different deep learning models. Clinical data and MR images of a total of 236 patients with pathologically confirmed glioblastoma and single brain metastases were retrospectively collected from January 2019 to May 2024 at Provincial Hospital of Shandong First Medical University, and the data were randomly divided into a training set and a test set according to the ratio of 8:2, in which the training set contained 197 cases and the test set contained 39 cases; the images were preprocessed and labeled with the tumor regions. The images were pre-processed and labeled with tumor regions, and different MRI sequences were input individually or in combination to train the deep learning model 3D ResNet-18, and the optimal sequence combinations were obtained by five-fold cross-validation enhancement of the data inputs and training of the deep learning models 3D Vision Transformer (3D Vit), 3D DenseNet, and 3D VGG; the working characteristic curves (ROCs) of subjects were plotted, and the area under the curve (AUC) was calculated. The area under the curve (AUC), accuracy, precision, recall and F1 score were used to evaluate the discriminative performance of the models. In addition, 48 patients with glioblastoma and single brain metastases from January 2020 to December 2022 were collected from the Affiliated Cancer Hospital of Shandong First Medical University as an external test set to compare the discriminative performance, robustness and generalization ability of the four deep learning models. In the comparison of the discriminative effect of different MRI sequences, the three sequence combinations of T1-CE, T2, and T2-Flair gained discriminative effect, with the accuracy and AUC values of 0.8718 and 0.9305, respectively; after the four deep learning models were inputted into the aforementioned sequence combinations, the accuracy and AUC of the external validation of the 3D ResNet-18 model were 0.8125, respectively, 0.8899, all of which are the highest among all models. A combination of multi-sequence MR images and a deep learning model can efficiently identify glioblastoma and solitary brain metastases preoperatively, and the deep learning model 3D ResNet-18 has the highest efficacy in identifying the two types of tumours.

Detection of carotid artery calcifications using artificial intelligence in dental radiographs: a systematic review and meta-analysis.

Arzani S, Soltani P, Karimi A, Yazdi M, Ayoub A, Khurshid Z, Galderisi D, Devlin H

pubmed logopapersMay 19 2025
Carotid artery calcifications are important markers of cardiovascular health, often associated with atherosclerosis and a higher risk of stroke. Recent research shows that dental radiographs can help identify these calcifications, allowing for earlier detection of vascular diseases. Advances in artificial intelligence (AI) have improved the ability to detect carotid calcifications in dental images, making it a useful screening tool. This systematic review and meta-analysis aimed to evaluate how accurately AI methods can identify carotid calcifications in dental radiographs. A systematic search in databases including PubMed, Scopus, Embase, and Web of Science for studies on AI algorithms used to detect carotid calcifications in dental radiographs was conducted. Two independent reviewers collected data on study aims, imaging techniques, and statistical measures such as sensitivity and specificity. A meta-analysis using random effects was performed, and the risk of bias was evaluated with the QUADAS-2 tool. Nine studies were suitable for qualitative analysis, while five provided data for quantitative analysis. These studies assessed AI algorithms using cone beam computed tomography (n = 3) and panoramic radiographs (n = 6). The sensitivity of the included studies ranged from 0.67 to 0.98 and specificity varied between 0.85 and 0.99. The overall effect size, by considering only one AI method in each study, resulted in a sensitivity of 0.92 [95% CI 0.81 to 0.97] and a specificity of 0.96 [95% CI 0.92 to 0.97]. The high sensitivity and specificity indicate that AI methods could be effective screening tools, enhancing the early detection of stroke and related cardiovascular risks. Not applicable.

Preoperative DBT-based radiomics for predicting axillary lymph node metastasis in breast cancer: a multi-center study.

He S, Deng B, Chen J, Li J, Wang X, Li G, Long S, Wan J, Zhang Y

pubmed logopapersMay 19 2025
In the prognosis of breast cancer, the status of axillary lymph nodes (ALN) is critically important. While traditional axillary lymph node dissection (ALND) provides comprehensive information, it is associated with high risks. Sentinel lymph node biopsy (SLND), as an alternative, is less invasive but still poses a risk of overtreatment. In recent years, digital breast tomosynthesis (DBT) technology has emerged as a new precise diagnostic tool for breast cancer, leveraging its high detection capability for lesions obscured by dense glandular tissue. This multi-center study evaluates the feasibility of preoperative DBT-based radiomics, using tumor and peritumoral features, to predict ALN metastasis in breast cancer. We retrospectively collected DBT imaging data from 536 preoperative breast cancer patients across two centers. Specifically, 390 cases were from one Hospital, and 146 cases were from another Hospital. These data were assigned to internal training and external validation sets, respectively. We performed 3D region of interest (ROI) delineation on the cranio-caudal (CC) and mediolateral oblique (MLO) views of DBT images and extracted radiomic features. Using methods such as analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), we selected radiomic features extracted from the tumor and its surrounding 3 mm, 5 mm, and 10 mm regions, and constructed a radiomic feature set. We then developed a combined model that includes the optimal radiomic features and clinical pathological factors. The performance of the combined model was evaluated using the area under the curve (AUC), and it was directly compared with the diagnostic results of radiologists. The results showed that the AUC of the radiomic features from the surrounding regions of the tumor were generally lower than those from the tumor itself. Among them, the Signature<sub>tuomor+10 mm</sub> model performed best, achieving an AUC of 0.806 using a logistic regression (LR) classifier to generate the RadScore.The nomogram incorporating both Ki67 and RadScore demonstrated a slightly higher AUC (0.813) compared to the Signature<sub>tuomor+10 mm</sub> model alone (0.806). By integrating relevant clinical information, the nomogram enhances potential clinical utility. Moreover, it outperformed radiologists' assessments in predictive accuracy, highlighting its added value in clinical decision-making. Radiomics based on DBT imaging of the tumor and surrounding regions can provide a non-invasive auxiliary tool to guide treatment strategies for ALN metastasis in breast cancer. Not applicable.

Development and validation of ultrasound-based radiomics deep learning model to identify bone erosion in rheumatoid arthritis.

Yan L, Xu J, Ye X, Lin M, Gong Y, Fang Y, Chen S

pubmed logopapersMay 19 2025
To develop and validate a deep learning radiomics fusion model (DLR) based on ultrasound (US) images to identify bone erosion in rheumatoid arthritis (RA) patients. A total of 432 patients with RA at two institutions were collected. Three hundred twelve patients from center 1 were randomly divided into a training set (N = 218) and an internal test set (N = 94) in a 7:3 ratio; meanwhile, 124 patients from center 2 were as an external test set. Radiomics (Rad) and deep learning (DL) features were extracted based on hand-crafted radiomics and deep transfer learning networks. The least absolute shrinkage and selection operator regression was employed to establish DLR fusion feature from the Rad and DL features. Subsequently, 10 machine learning algorithms were used to construct models and the final optimal model was selected. The performance of models was evaluated using receiver operating characteristic (ROC) and decision curve analysis (DCA). The diagnostic efficacy of sonographers was compared with and without the assistance of the optimal model. LR was chosen as the optimal algorithm for model construction account for superior performance (Rad/DL/DLR: area under the curve [AUC] = 0.906/0.974/0.979) in the training set. In the internal test set, DLR_LR as the final model had the highest AUC (AUC = 0.966), which was also validated in the external test set (AUC = 0.932). With the aid of DLR_LR model, the overall performance of both junior and senior sonographers improved significantly (P < 0.05), and there was no significant difference between the junior sonographer with DLR_LR model assistance and the senior sonographer without assistance (P > 0.05). DLR model based on US images is the best performer and is expected to become an important tool for identifying bone erosion in RA patients. Key Points • DLR model based on US images is the best performer in identifying BE in RA patients. • DLR model may assist the sonographers to improve the accuracy of BE evaluations.

Semiautomated segmentation of breast tumor on automatic breast ultrasound image using a large-scale model with customized modules.

Zhou Y, Ye M, Ye H, Zeng S, Shu X, Pan Y, Wu A, Liu P, Zhang G, Cai S, Chen S

pubmed logopapersMay 19 2025
To verify the capability of the Segment Anything Model for medical images in 3D (SAM-Med3D), tailored with low-rank adaptation (LoRA) strategies, in segmenting breast tumors in Automated Breast Ultrasound (ABUS) images. This retrospective study collected data from 329 patients diagnosed with breast cancer (average age 54 years). The dataset was randomly divided into training (n = 204), validation (n = 29), and test sets (n = 59). Two experienced radiologists manually annotated the regions of interest of each sample in the dataset, which served as ground truth for training and evaluating the SAM-Med3D model with additional customized modules. For semi-automatic tumor segmentation, points were randomly sampled within the lesion areas to simulate the radiologists' clicks in real-world scenarios. The segmentation performance was evaluated using the Dice coefficient. A total of 492 cases (200 from the "Tumor Detection, Segmentation, and Classification Challenge on Automated 3D Breast Ultrasound (TDSC-ABUS) 2023 challenge") were subjected to semi-automatic segmentation inference. The average Dice Similariy Coefficient (DSC) scores for the training, validation, and test sets of the Lishui dataset were 0.75, 0.78, and 0.75, respectively. The Breast Imaging Reporting and Data System (BI-RADS) categories of all samples range from BI-RADS 3 to 6, yielding an average DSC coefficient between 0.73 and 0.77. By categorizing the samples (lesion volumes ranging from 1.64 to 100.03 cm<sup>3</sup>) based on lesion size, the average DSC falls between 0.72 and 0.77.And the overall average DSC for the TDSC-ABUS 2023 challenge dataset was 0.79, with the test set achieving a sora-of-art scores of 0.79. The SAM-Med3D model with additional customized modules demonstrates good performance in semi-automatic 3D ABUS breast cancer tumor segmentation, indicating its feasibility for application in computer-aided diagnosis systems.

Learning Wavelet-Sparse FDK for 3D Cone-Beam CT Reconstruction

Yipeng Sun, Linda-Sophie Schneider, Chengze Ye, Mingxuan Gu, Siyuan Mei, Siming Bayer, Andreas Maier

arxiv logopreprintMay 19 2025
Cone-Beam Computed Tomography (CBCT) is essential in medical imaging, and the Feldkamp-Davis-Kress (FDK) algorithm is a popular choice for reconstruction due to its efficiency. However, FDK is susceptible to noise and artifacts. While recent deep learning methods offer improved image quality, they often increase computational complexity and lack the interpretability of traditional methods. In this paper, we introduce an enhanced FDK-based neural network that maintains the classical algorithm's interpretability by selectively integrating trainable elements into the cosine weighting and filtering stages. Recognizing the challenge of a large parameter space inherent in 3D CBCT data, we leverage wavelet transformations to create sparse representations of the cosine weights and filters. This strategic sparsification reduces the parameter count by $93.75\%$ without compromising performance, accelerates convergence, and importantly, maintains the inference computational cost equivalent to the classical FDK algorithm. Our method not only ensures volumetric consistency and boosts robustness to noise, but is also designed for straightforward integration into existing CT reconstruction pipelines. This presents a pragmatic enhancement that can benefit clinical applications, particularly in environments with computational limitations.

Non-invasive CT based multiregional radiomics for predicting pathologic complete response to preoperative neoadjuvant chemoimmunotherapy in non-small cell lung cancer.

Fan S, Xie J, Zheng S, Wang J, Zhang B, Zhang Z, Wang S, Cui Y, Liu J, Zheng X, Ye Z, Cui X, Yue D

pubmed logopapersMay 19 2025
This study aims to develop and validate a multiregional radiomics model to predict pathological complete response (pCR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC), and further evaluate the performance of the model in different specific subgroups (N2 stage and anti-PD-1/PD-L1). 216 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy followed by surgical intervention were included and assigned to training and validation sets randomly. From pre-treatment baseline CT, one intratumoral (T) and two peritumoral regions (P<sub>3</sub>: 0-3 mm; P<sub>6</sub>: 0-6 mm) were extracted. Five radiomics models were developed using machine learning algorithms to predict pCR, utilizing selected features from intratumoral (T), peritumoral (P<sub>3</sub>, P<sub>6</sub>), and combined intra- and peritumoral regions (T + P<sub>3</sub>, T + P<sub>6</sub>). Additionally, the predictive efficacy of the optimal model was specifically assessed for patients in the N2 stage and anti-PD-1/PD-L1 subgroups. A total of 51.4 % (111/216) of patients exhibited pCR following neoadjuvant chemoimmunotherapy. Multivariable analysis identified that only the T + P<sub>3</sub> radiomics signature served as independent predictor of pCR (P < 0.001). The multiregional radiomics model (T + P<sub>3</sub>) exhibited superior predictive performance for pCR, achieving an area under the curve (AUC) of 0.75 in the validation cohort. Furthermore, this multiregional model maintained robust predictive accuracy in both N2 stage and anti-PD-1/PD-L1 subgroups, with an AUC of 0.829 and 0.833, respectively. The proposed multiregional radiomics model showed potential in predicting pCR in NSCLC after neoadjuvant chemoimmunotherapy, and demonstrated good predictive performance in different specific subgroups. This capability may assist clinicians in identifying suitable candidates for neoadjuvant chemoimmunotherapy and promote the advancement in precision therapy.

Improving Deep Learning-Based Grading of Partial-thickness Supraspinatus Tendon Tears with Guided Diffusion Augmentation.

Ni M, Jiesisibieke D, Zhao Y, Wang Q, Gao L, Tian C, Yuan H

pubmed logopapersMay 19 2025
To develop and validate a deep learning system with guided diffusion-based data augmentation for grading partial-thickness supraspinatus tendon (SST) tears and to compare its performance with experienced radiologists, including external validation. This retrospective study included 1150 patients with arthroscopically confirmed SST tears, divided into a training set (741 patients), validation set (185 patients), and internal test set (185 patients). An independent external test set of 224 patients was used for generalizability assessment. To address data imbalance, MRI images were augmented using a guided diffusion model. A ResNet-34 model was employed for Ellman grading of bursal-sided and articular-sided partial-thickness tears across different MRI sequences (oblique coronal [OCOR], oblique sagittal [OSAG], and combined OCOR+OSAG). Performance was evaluated using AUC and precision-recall curves, and compared to three experienced musculoskeletal (MSK) radiologists. The DeLong test was used to compare performance across different sequence combinations. A total of 26,020 OCOR images and 26,356 OSAG images were generated using the guided diffusion model. For bursal-sided partial-thickness tears in the internal dataset, the model achieved AUCs of 0.99, 0.98, and 0.97 for OCOR, OSAG, and combined sequences, respectively, while for articular-sided tears, AUCs were 0.99, 0.99, and 0.99. The DeLong test showed no significant differences among sequence combinations (P=0.17, 0.14, 0.07). In the external dataset, the combined-sequence model achieved AUCs of 0.99, 0.97, and 0.97 for bursal-sided tears and 0.99, 0.95, and 0.95 for articular-sided tears. Radiologists demonstrated an ICC of 0.99, but their grading performance was significantly lower than the ResNet-34 model (P<0.001). The deep learning system improved grading consistency and significantly reduced evaluation time, while guided diffusion augmentation enhanced model robustness. The proposed deep learning system provides a reliable and efficient method for grading partial-thickness SST tears, achieving radiologist-level accuracy with greater consistency and faster evaluation speed.

Effect of low-dose colchicine on pericoronary inflammation and coronary plaque composition in chronic coronary disease: a subanalysis of the LoDoCo2 trial.

Fiolet ATL, Lin A, Kwiecinski J, Tutein Nolthenius J, McElhinney P, Grodecki K, Kietselaer B, Opstal TS, Cornel JH, Knol RJ, Schaap J, Aarts RAHM, Tutein Nolthenius AMFA, Nidorf SM, Velthuis BK, Dey D, Mosterd A

pubmed logopapersMay 19 2025
Low-dose colchicine (0.5 mg once daily) reduces the risk of major cardiovascular events in coronary disease, but its mechanism of action is not yet fully understood. We investigated whether low-dose colchicine is associated with changes in pericoronary inflammation and plaque composition in patients with chronic coronary disease. We performed a cross-sectional, nationwide, subanalysis of the Low-Dose Colchicine 2 Trial (LoDoCo2, n=5522). CT angiography studies were performed in 151 participants randomised to colchicine or placebo coronary after a median treatment duration of 28.2 months. Pericoronary adipose tissue (PCAT) attenuation measurements around proximal coronary artery segments and quantitative plaque analysis for the entire coronary tree were performed using artificial intelligence-enabled plaque analysis software. Median PCAT attenuation was not significantly different between the two groups (-79.5 Hounsfield units (HU) for colchicine versus -78.7 HU for placebo, p=0.236). Participants assigned to colchicine had a higher volume (169.6 mm<sup>3</sup> vs 113.1 mm<sup>3</sup>, p=0.041) and burden (9.6% vs 7.0%, p=0.035) of calcified plaque, and higher volume of dense calcified plaque (192.8 mm<sup>3</sup> vs 144.3 mm<sup>3</sup>, p=0.048) compared with placebo, independent of statin therapy. Colchicine treatment was associated with a lower burden of low-attenuation plaque in participants on a low-intensity statin, but not in those on a high-intensity statin (p<sub>interaction</sub>=0.037). Pericoronary inflammation did not differ among participants who received low-dose colchicine compared with placebo. Low-dose colchicine was associated with a higher volume of calcified plaque, particularly dense calcified plaque, which is considered a feature of plaque stability.
Page 261 of 3073064 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.