Sort by:
Page 26 of 58575 results

Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation

Fangyijie Wang, Kevin Whelan, Félix Balado, Guénolé Silvestre, Kathleen M. Curran

arxiv logopreprintJun 30 2025
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.

Precision and Personalization: How Large Language Models Redefining Diagnostic Accuracy in Personalized Medicine - A Systematic Literature Review.

Aththanagoda AKNL, Kulathilake KASH, Abdullah NA

pubmed logopapersJun 30 2025
Personalized medicine aims to tailor medical treatments to the unique characteristics of each patient, but its effectiveness relies on achieving diagnostic accuracy to fully understand individual variability in disease response and treatment efficacy. This systematic literature review explores the role of large language models (LLMs) in enhancing diagnostic precision and supporting the advancement of personalized medicine. A comprehensive search was conducted across Web of Science, Science Direct, Scopus, and IEEE Xplore, targeting peer-reviewed articles published in English between January 2020 and March 2025 that applied LLMs within personalized medicine contexts. Following PRISMA guidelines, 39 relevant studies were selected and systematically analyzed. The findings indicate a growing integration of LLMs across key domains such as clinical informatics, medical imaging, patient-specific diagnosis, and clinical decision support. LLMs have shown potential in uncovering subtle data patterns critical for accurate diagnosis and personalized treatment planning. This review highlights the expanding role of LLMs in improving diagnostic accuracy in personalized medicine, offering insights into their performance, applications, and challenges, while also acknowledging limitations in generalizability due to variable model performance and dataset biases. The review highlights the importance of addressing challenges related to data privacy, model interpretability, and reliability across diverse clinical scenarios. For successful clinical integration, future research must focus on refining LLM technologies, ensuring ethical standards, and validating models continuously to safeguard effective and responsible use in healthcare environments.

Federated Breast Cancer Detection Enhanced by Synthetic Ultrasound Image Augmentation

Hongyi Pan, Ziliang Hong, Gorkem Durak, Ziyue Xu, Ulas Bagci

arxiv logopreprintJun 29 2025
Federated learning (FL) has emerged as a promising paradigm for collaboratively training deep learning models across institutions without exchanging sensitive medical data. However, its effectiveness is often hindered by limited data availability and non-independent, identically distributed data across participating clients, which can degrade model performance and generalization. To address these challenges, we propose a generative AI based data augmentation framework that integrates synthetic image sharing into the federated training process for breast cancer diagnosis via ultrasound images. Specifically, we train two simple class-specific Deep Convolutional Generative Adversarial Networks: one for benign and one for malignant lesions. We then simulate a realistic FL setting using three publicly available breast ultrasound image datasets: BUSI, BUS-BRA, and UDIAT. FedAvg and FedProx are adopted as baseline FL algorithms. Experimental results show that incorporating a suitable number of synthetic images improved the average AUC from 0.9206 to 0.9237 for FedAvg and from 0.9429 to 0.9538 for FedProx. We also note that excessive use of synthetic data reduced performance, underscoring the importance of maintaining a balanced ratio of real and synthetic samples. Our findings highlight the potential of generative AI based data augmentation to enhance FL results in the breast ultrasound image classification task.

MedRegion-CT: Region-Focused Multimodal LLM for Comprehensive 3D CT Report Generation

Sunggu Kyung, Jinyoung Seo, Hyunseok Lim, Dongyeong Kim, Hyungbin Park, Jimin Sung, Jihyun Kim, Wooyoung Jo, Yoojin Nam, Namkug Kim

arxiv logopreprintJun 29 2025
The recent release of RadGenome-Chest CT has significantly advanced CT-based report generation. However, existing methods primarily focus on global features, making it challenging to capture region-specific details, which may cause certain abnormalities to go unnoticed. To address this, we propose MedRegion-CT, a region-focused Multi-Modal Large Language Model (MLLM) framework, featuring three key innovations. First, we introduce Region Representative ($R^2$) Token Pooling, which utilizes a 2D-wise pretrained vision model to efficiently extract 3D CT features. This approach generates global tokens representing overall slice features and region tokens highlighting target areas, enabling the MLLM to process comprehensive information effectively. Second, a universal segmentation model generates pseudo-masks, which are then processed by a mask encoder to extract region-centric features. This allows the MLLM to focus on clinically relevant regions, using six predefined region masks. Third, we leverage segmentation results to extract patient-specific attributions, including organ size, diameter, and locations. These are converted into text prompts, enriching the MLLM's understanding of patient-specific contexts. To ensure rigorous evaluation, we conducted benchmark experiments on report generation using the RadGenome-Chest CT. MedRegion-CT achieved state-of-the-art performance, outperforming existing methods in natural language generation quality and clinical relevance while maintaining interpretability. The code for our framework is publicly available.

Prompt Mechanisms in Medical Imaging: A Comprehensive Survey

Hao Yang, Xinlong Liang, Zhang Li, Yue Sun, Zheyu Hu, Xinghe Xie, Behdad Dashtbozorg, Jincheng Huang, Shiwei Zhu, Luyi Han, Jiong Zhang, Shanshan Wang, Ritse Mann, Qifeng Yu, Tao Tan

arxiv logopreprintJun 28 2025
Deep learning offers transformative potential in medical imaging, yet its clinical adoption is frequently hampered by challenges such as data scarcity, distribution shifts, and the need for robust task generalization. Prompt-based methodologies have emerged as a pivotal strategy to guide deep learning models, providing flexible, domain-specific adaptations that significantly enhance model performance and adaptability without extensive retraining. This systematic review critically examines the burgeoning landscape of prompt engineering in medical imaging. We dissect diverse prompt modalities, including textual instructions, visual prompts, and learnable embeddings, and analyze their integration for core tasks such as image generation, segmentation, and classification. Our synthesis reveals how these mechanisms improve task-specific outcomes by enhancing accuracy, robustness, and data efficiency and reducing reliance on manual feature engineering while fostering greater model interpretability by making the model's guidance explicit. Despite substantial advancements, we identify persistent challenges, particularly in prompt design optimization, data heterogeneity, and ensuring scalability for clinical deployment. Finally, this review outlines promising future trajectories, including advanced multimodal prompting and robust clinical integration, underscoring the critical role of prompt-driven AI in accelerating the revolution of diagnostics and personalized treatment planning in medicine.

Novel Artificial Intelligence-Driven Infant Meningitis Screening From High-Resolution Ultrasound Imaging.

Sial HA, Carandell F, Ajanovic S, Jiménez J, Quesada R, Santos F, Buck WC, Sidat M, Bassat Q, Jobst B, Petrone P

pubmed logopapersJun 28 2025
Infant meningitis can be a life-threatening disease and requires prompt and accurate diagnosis to prevent severe outcomes or death. Gold-standard diagnosis requires lumbar puncture (LP) to obtain and analyze cerebrospinal fluid (CSF). Despite being standard practice, LPs are invasive, pose risks for the patient and often yield negative results, either due to contamination with red blood cells from the puncture itself or because LPs are routinely performed to rule out a life-threatening infection, despite the disease's relatively low incidence. Furthermore, in low-income settings where incidence is the highest, LPs and CSF exams are rarely feasible, and suspected meningitis cases are generally treated empirically. There is a growing need for non-invasive, accurate diagnostic methods. We developed a three-stage deep learning framework using Neosonics ultrasound technology for 30 infants with suspected meningitis and a permeable fontanelle at three Spanish University Hospitals (from 2021 to 2023). In stage 1, 2194 images were processed for quality control using a vessel/non-vessel model, with a focus on vessel identification and manual removal of images exhibiting artifacts such as poor coupling and clutter. This refinement process resulted in a final cohort comprising 16 patients-6 cases (336 images) and 10 controls (445 images), yielding 781 images for the second stage. The second stage involved the use of a deep learning model to classify images based on a white blood cell count threshold (set at 30 cells/mm<sup>3</sup>) into control or meningitis categories. The third stage integrated explainable artificial intelligence (XAI) methods, such as Grad-CAM visualizations, alongside image statistical analysis, to provide transparency and interpretability of the model's decision-making process in our artificial intelligence-driven screening tool. Our approach achieved 96% accuracy in quality control and 93% precision and 92% accuracy in image-level meningitis detection, with an overall patient-level accuracy of 94%. It identified 6 meningitis cases and 10 controls with 100% sensitivity and 90% specificity, demonstrating only a single misclassification. The use of gradient-weighted class activation mapping-based XAI significantly enhanced diagnostic interpretability, and to further refine our insights we incorporated a statistics-based XAI approach. By analyzing image metrics such as entropy and standard deviation, we identified texture variations in the images attributable to the presence of cells, which improved the interpretability of our diagnostic tool. This study supports the efficacy of a multi-stage deep learning model for non-invasive screening of infant meningitis and its potential to guide the need for LPs. It also highlights the transformative potential of artificial intelligence in medical diagnostic screening for neonatal health care, paving the way for future research and innovations.

Radio DINO: A foundation model for advanced radiomics and AI-driven medical imaging analysis.

Zedda L, Loddo A, Di Ruberto C

pubmed logopapersJun 28 2025
Radiomics is transforming medical imaging by extracting complex features that enhance disease diagnosis, prognosis, and treatment evaluation. However, traditional approaches face significant challenges, such as the need for manual feature engineering, high dimensionality, and limited sample sizes. This paper presents Radio DINO, a novel family of deep learning foundation models that leverage self-supervised learning (SSL) techniques from DINO and DINOV2, pretrained on the RadImageNet dataset. The novelty of our approach lies in (1) developing Radio DINO to capture rich semantic embeddings, enabling robust feature extraction without manual intervention, (2) demonstrating superior performance across various clinical tasks on the MedMNISTv2 dataset, surpassing existing models, and (3) enhancing the interpretability of the model by providing visualizations that highlight its focus on clinically relevant image regions. Our results show that Radio DINO has the potential to democratize advanced radiomics tools, making them accessible to healthcare institutions with limited resources and ultimately improving diagnostic and prognostic outcomes in radiology.

Association of Covert Cerebrovascular Disease With Falls Requiring Medical Attention.

Clancy Ú, Puttock EJ, Chen W, Whiteley W, Vickery EM, Leung LY, Luetmer PH, Kallmes DF, Fu S, Zheng C, Liu H, Kent DM

pubmed logopapersJun 27 2025
The impact of covert cerebrovascular disease on falls in the general population is not well-known. Here, we determine the time to a first fall following incidentally detected covert cerebrovascular disease during a clinical neuroimaging episode. This longitudinal cohort study assessed computed tomography (CT) and magnetic resonance imaging from 2009 to 2019 of patients aged >50 years registered with Kaiser Permanente Southern California which is a healthcare organization combining health plan coverage with coordinated medical services, excluding those with before stroke/dementia. We extracted evidence of incidental covert brain infarcts (CBI) and white matter hyperintensities/hypoattenuation (WMH) from imaging reports using natural language processing. We examined associations of CBI and WMH with falls requiring medical attention, using Cox proportional hazards regression models with adjustment for 12 variables including age, sex, ethnicity multimorbidity, polypharmacy, and incontinence. We assessed 241 050 patients, mean age 64.9 (SD, 10.42) years, 61.3% female, detecting covert cerebrovascular disease in 31.1% over a mean follow-up duration of 3.04 years. A recorded fall occurred in 21.2% (51 239/241 050) during follow-up. On CT, single fall incidence rate/1000 person-years (p-y) was highest in individuals with both CBI and WMH on CT (129.3 falls/1000 p-y [95% CI, 123.4-135.5]), followed by WMH (109.9 falls/1000 p-y [108.0-111.9]). On magnetic resonance imaging, the incidence rate was the highest with both CBI and WMH (76.3 falls/1000 p-y [95% CI, 69.7-83.2]), followed by CBI (71.4 falls/1000 p-y [95% CI, 65.9-77.2]). The adjusted hazard ratio for single index fall in individuals with CBI on CT was 1.13 (95% CI, 1.09-1.17); versus magnetic resonance imaging 1.17 (95% CI, 1.08-1.27). On CT, the risk for single index fall incrementally increased for mild (1.37 [95% CI, 1.32-1.43]), moderate (1.57 [95% CI, 1.48-1.67]), or severe WMH (1.57 [95% CI, 1.45-1.70]). On magnetic resonance imaging, index fall risk similarly increased with increasing WMH severity: mild (1.11 [95% CI, 1.07-1.17]), moderate (1.21 [95% CI, 1.13-1.28]), and severe WMH (1.34 [95% CI, 1.22-1.46]). In a large population with neuroimaging, CBI and WMH are independently associated with greater risks of an index fall. Increasing severities of WMH are associated incrementally with fall risk across imaging modalities.

Improving radiology reporting accuracy: use of GPT-4 to reduce errors in reports.

Mayes CJ, Reyes C, Truman ME, Dodoo CA, Adler CR, Banerjee I, Khandelwal A, Alexander LF, Sheedy SP, Thompson CP, Varner JA, Zulfiqar M, Tan N

pubmed logopapersJun 27 2025
Radiology reports are essential for communicating imaging findings to guide diagnosis and treatment. Although most radiology reports are accurate, errors can occur in the final reports due to high workloads, use of dictation software, and human error. Advanced artificial intelligence models, such as GPT-4, show potential as tools to improve report accuracy. This retrospective study evaluated how GPT-4 performed in detecting and correcting errors in finalized radiology reports in real-world settings for abdominopelvic computed tomography (CT) reports. We evaluated finalized CT abdominopelvic reports from a tertiary health system by using GPT-4 with zero-shot learning techniques. Six radiologists each reviewed 100 of their finalized reports (randomly selected), evaluating GPT-4's suggested revisions for agreement, acceptance, and clinical impact. The radiologists' responses were compared by years in practice and sex. GPT-4 identified issues and suggested revisions for 91% of the 600 reports; most revisions addressed grammar (74%). The radiologists agreed with 27% of the revisions and accepted 23%. Most revisions were rated as having no (44%) or low (46%) clinical impact. Potential harm was rare (8%), with only 2 cases of potentially severe harm. Radiologists with less experience (≤ 7 years of practice) were more likely to agree with the revisions suggested by GPT-4 than those with more experience (34% vs. 20%, P = .003) and accepted a greater percentage of the revisions (32% vs. 15%, P = .003). Although GPT-4 showed promise in identifying errors and improving the clarity of finalized radiology reports, most errors were categorized as minor, with no or low clinical impact. Collectively, the radiologists accepted 23% of the suggested revisions in their finalized reports. This study highlights the potential of GPT-4 as a prospective tool for radiology reporting, with further refinement needed for consistent use in clinical practice.

White Box Modeling of Self-Determined Sequence Exercise Program Among Sarcopenic Older Adults: Uncovering a Novel Strategy Overcoming Decline of Skeletal Muscle Area.

Wei M, He S, Meng D, Lv Z, Guo H, Yang G, Wang Z

pubmed logopapersJun 27 2025
Resistance exercise, Taichi exercise, and the hybrid exercise program consisting of the two aforementioned methods have been demonstrated to increase the skeletal muscle mass of older individuals with sarcopenia. However, the exercise sequence has not been comprehensively investigated. Therefore, we designed a self-determined sequence exercise program, incorporating resistance exercises, Taichi, and the hybrid exercise program to overcome the decline of skeletal muscle area and reverse sarcopenia in older individuals. Ninety-one older patients with sarcopenia between the ages of 60 and 75 completed this three-stage randomized controlled trial for 24 weeks, including the self-determined sequence exercise program group (n = 31), the resistance training group (n = 30), and the control group (n = 30). We used quantitative computed tomography to measure the effects of different intervention protocols on skeletal muscle mass in participants. Participants' demographic variables were analyzed using one-way analysis of variance and chi-square tests, and experimental data were examined using repeated-measures analysis of variance. Furthermore, we utilized the Markov model to explain the effectiveness of the exercise programs among the three-stage intervention and explainable artificial intelligence to predict whether intervention programs can reverse sarcopenia. Repeated-measures analysis of variance results indicated that there were statistically significant Group × Time interactions detected in the L3 skeletal muscle density, L3 skeletal muscle area, muscle fat infiltration, handgrip strength, and relative skeletal muscle mass index. The stacking model exhibited the best accuracy (84.5%) and the best F1-score (68.8%) compared to other algorithms. In the self-determined sequence exercise program group, strength training contributed most to the reversal of sarcopenia. One self-determined sequence exercise program can improve skeletal muscle area among sarcopenic older people. Based on our stacking model, we can predict whether sarcopenia in older people can be reversed accurately. The trial was registered in ClinicalTrials.gov. TRN:NCT05694117. Our findings indicate that such tailored exercise interventions can substantially benefit sarcopenic patients, and our stacking model provides an accurate predictive tool for assessing the reversibility of sarcopenia in older adults. This approach not only enhances individual health outcomes but also informs future development of targeted exercise programs to mitigate age-related muscle decline.
Page 26 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.