Sort by:
Page 26 of 36351 results

Can intraoperative improvement of radial endobronchial ultrasound imaging enhance the diagnostic yield in peripheral pulmonary lesions?

Nishida K, Ito T, Iwano S, Okachi S, Nakamura S, Chrétien B, Chen-Yoshikawa TF, Ishii M

pubmed logopapersMay 26 2025
Data regarding the diagnostic efficacy of radial endobronchial ultrasound (R-EBUS) findings obtained via transbronchial needle aspiration (TBNA)/biopsy (TBB) with endobronchial ultrasonography with a guide sheath (EBUS-GS) for peripheral pulmonary lesions (PPLs) are lacking. We evaluated whether intraoperative probe repositioning improves R-EBUS imaging and affects diagnostic yield and safety of EBUS-guided sampling for PPLs. We retrospectively studied 363 patients with PPLs who underwent TBNA/TBB (83 lesions) or TBB (280 lesions) using EBUS-GS. Based on the R-EBUS findings before and after these procedures, patients were categorized into three groups: the improved R-EBUS image (n = 52), unimproved R-EBUS image (n = 69), and initial within-lesion groups (n = 242). The impact of improved R-EBUS findings on diagnostic yield and complications was assessed using multivariable logistic regression, adjusting for lesion size, lesion location, and the presence of a bronchus leading to the lesion on CT. A separate exploratory random-forest model with SHAP analysis was used to explore factors associated with successful repositioning in lesions not initially "within." The diagnostic yield in the improved R-EBUS group was significantly higher than that in the unimproved R-EBUS group (76.9% vs. 46.4%, p = 0.001). The regression model revealed that the improvement in intraoperative R-EBUS findings was associated with a high diagnostic yield (odds ratio: 3.55, 95% confidence interval, 1.57-8.06, p = 0.002). Machine learning analysis indicated that inner lesion location and radiographic visibility were the most influential predictors of successful repositioning. The complication rates were similar across all groups (total complications: 5.8% vs. 4.3% vs. 6.2%, p = 0.943). Improved R-EBUS findings during TBNA/TBB or TBB with EBUS-GS were associated with a high diagnostic yield without an increase in complications, even when the initial R-EBUS findings were inadequate. This suggests that repeated intraoperative probe repositioning can safely boost outcomes.

Clinical, radiological, and radiomics feature-based explainable machine learning models for prediction of neurological deterioration and 90-day outcomes in mild intracerebral hemorrhage.

Zeng W, Chen J, Shen L, Xia G, Xie J, Zheng S, He Z, Deng L, Guo Y, Yang J, Lv Y, Qin G, Chen W, Yin J, Wu Q

pubmed logopapersMay 26 2025
The risks and prognosis of mild intracerebral hemorrhage (ICH) patients were easily overlooked by clinicians. Our goal was to use machine learning (ML) methods to predict mild ICH patients' neurological deterioration (ND) and 90-day prognosis. This prospective study recruited 257 patients with mild ICH for this study. After exclusions, 148 patients were included in the ND study and 144 patients in the 90-day prognosis study. We trained five ML models using filtered data, including clinical, traditional imaging, and radiomics indicators based on non-contrast computed tomography (NCCT). Additionally, we incorporated the Shapley Additive Explanation (SHAP) method to display key features and visualize the decision-making process of the model for each individual. A total of 21 (14.2%) mild ICH patients developed ND, and 35 (24.3%) mild ICH patients had a 90-day poor prognosis. In the validation set, the support vector machine (SVM) models achieved an AUC of 0.846 (95% confidence intervals (CI), 0.627-1.000) and an F1-score of 0.667 for predicting ND, and an AUC of 0.970 (95% CI, 0.928-1.000), and an F1-score of 0.846 for predicting 90-day prognosis. The SHAP analysis results indicated that several clinical features, the island sign, and the radiomics features of the hematoma were of significant value in predicting ND and 90-day prognosis. The ML models, constructed using clinical, traditional imaging, and radiomics indicators, demonstrated good classification performance in predicting ND and 90-day prognosis in patients with mild ICH, and have the potential to serve as an effective tool in clinical practice. Not applicable.

Multimodal integration of longitudinal noninvasive diagnostics for survival prediction in immunotherapy using deep learning.

Yeghaian M, Bodalal Z, van den Broek D, Haanen JBAG, Beets-Tan RGH, Trebeschi S, van Gerven MAJ

pubmed logopapersMay 26 2025
Immunotherapies have revolutionized the landscape of cancer treatments. However, our understanding of response patterns in advanced cancers treated with immunotherapy remains limited. By leveraging routinely collected noninvasive longitudinal and multimodal data with artificial intelligence, we could unlock the potential to transform immunotherapy for cancer patients, paving the way for personalized treatment approaches. In this study, we developed a novel artificial neural network architecture, multimodal transformer-based simple temporal attention (MMTSimTA) network, building upon a combination of recent successful developments. We integrated pre- and on-treatment blood measurements, prescribed medications, and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict mortality at 3, 6, 9, and 12 months. Different variants of our extended MMTSimTA network were implemented and compared to baseline methods, incorporating intermediate and late fusion-based integration methods. The strongest prognostic performance was demonstrated using a variant of the MMTSimTA model with area under the curves of 0.84 ± 0.04, 0.83 ± 0.02, 0.82 ± 0.02, 0.81 ± 0.03 for 3-, 6-, 9-, and 12-month survival prediction, respectively. Our findings show that integrating noninvasive longitudinal data using our novel architecture yields an improved multimodal prognostic performance, especially in short-term survival prediction. Our study demonstrates that multimodal longitudinal integration of noninvasive data using deep learning may offer a promising approach for personalized prognostication in immunotherapy-treated cancer patients.

CardioCoT: Hierarchical Reasoning for Multimodal Survival Analysis

Shaohao Rui, Haoyang Su, Jinyi Xiang, Lian-Ming Wu, Xiaosong Wang

arxiv logopreprintMay 25 2025
Accurate prediction of major adverse cardiovascular events recurrence risk in acute myocardial infarction patients based on postoperative cardiac MRI and associated clinical notes is crucial for precision treatment and personalized intervention. Existing methods primarily focus on risk stratification capability while overlooking the need for intermediate robust reasoning and model interpretability in clinical practice. Moreover, end-to-end risk prediction using LLM/VLM faces significant challenges due to data limitations and modeling complexity. To bridge this gap, we propose CardioCoT, a novel two-stage hierarchical reasoning-enhanced survival analysis framework designed to enhance both model interpretability and predictive performance. In the first stage, we employ an evidence-augmented self-refinement mechanism to guide LLM/VLMs in generating robust hierarchical reasoning trajectories based on associated radiological findings. In the second stage, we integrate the reasoning trajectories with imaging data for risk model training and prediction. CardioCoT demonstrates superior performance in MACE recurrence risk prediction while providing interpretable reasoning processes, offering valuable insights for clinical decision-making.

[Clinical value of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers].

Fang MJ, Dong D, Tian J

pubmed logopapersMay 25 2025
Peritoneal metastasis is a key factor in the poor prognosis of advanced gastrointestinal cancer patients. Traditional radiological diagnostic faces challenges such as insufficient sensitivity. Through technologies like radiomics and deep learning, artificial intelligence can deeply analyze the tumor heterogeneity and microenvironment features in medical images, revealing markers of peritoneal metastasis and constructing high-precision predictive models. These technologies have demonstrated advantages in tasks such as predicting peritoneal metastasis, assessing the risk of peritoneal recurrence, and identifying small metastatic foci during surgery. This paper summarizes the representative progress and application prospects of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis, and discusses potential development directions such as multimodal data fusion and large model. The integration of medical imaging artificial intelligence with clinical practice is expected to advance personalized and precision medicine in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers.

MedITok: A Unified Tokenizer for Medical Image Synthesis and Interpretation

Chenglong Ma, Yuanfeng Ji, Jin Ye, Zilong Li, Chenhui Wang, Junzhi Ning, Wei Li, Lihao Liu, Qiushan Guo, Tianbin Li, Junjun He, Hongming Shan

arxiv logopreprintMay 25 2025
Advanced autoregressive models have reshaped multimodal AI. However, their transformative potential in medical imaging remains largely untapped due to the absence of a unified visual tokenizer -- one capable of capturing fine-grained visual structures for faithful image reconstruction and realistic image synthesis, as well as rich semantics for accurate diagnosis and image interpretation. To this end, we present MedITok, the first unified tokenizer tailored for medical images, encoding both low-level structural details and high-level clinical semantics within a unified latent space. To balance these competing objectives, we introduce a novel two-stage training framework: a visual representation alignment stage that cold-starts the tokenizer reconstruction learning with a visual semantic constraint, followed by a textual semantic representation alignment stage that infuses detailed clinical semantics into the latent space. Trained on the meticulously collected large-scale dataset with over 30 million medical images and 2 million image-caption pairs, MedITok achieves state-of-the-art performance on more than 30 datasets across 9 imaging modalities and 4 different tasks. By providing a unified token space for autoregressive modeling, MedITok supports a wide range of tasks in clinical diagnostics and generative healthcare applications. Model and code will be made publicly available at: https://github.com/Masaaki-75/meditok.

Improving Medical Reasoning with Curriculum-Aware Reinforcement Learning

Shaohao Rui, Kaitao Chen, Weijie Ma, Xiaosong Wang

arxiv logopreprintMay 25 2025
Recent advances in reinforcement learning with verifiable, rule-based rewards have greatly enhanced the reasoning capabilities and out-of-distribution generalization of VLMs/LLMs, obviating the need for manually crafted reasoning chains. Despite these promising developments in the general domain, their translation to medical imaging remains limited. Current medical reinforcement fine-tuning (RFT) methods predominantly focus on close-ended VQA, thereby restricting the model's ability to engage in world knowledge retrieval and flexible task adaptation. More critically, these methods fall short of addressing the critical clinical demand for open-ended, reasoning-intensive decision-making. To bridge this gap, we introduce \textbf{MedCCO}, the first multimodal reinforcement learning framework tailored for medical VQA that unifies close-ended and open-ended data within a curriculum-driven RFT paradigm. Specifically, MedCCO is initially fine-tuned on a diverse set of close-ended medical VQA tasks to establish domain-grounded reasoning capabilities, and is then progressively adapted to open-ended tasks to foster deeper knowledge enhancement and clinical interpretability. We validate MedCCO across eight challenging medical VQA benchmarks, spanning both close-ended and open-ended settings. Experimental results show that MedCCO consistently enhances performance and generalization, achieving a 11.4\% accuracy gain across three in-domain tasks, and a 5.7\% improvement on five out-of-domain benchmarks. These findings highlight the promise of curriculum-guided RL in advancing robust, clinically-relevant reasoning in medical multimodal language models.

Integrating Large language models into radiology workflow: Impact of generating personalized report templates from summary.

Gupta A, Hussain M, Nikhileshwar K, Rastogi A, Rangarajan K

pubmed logopapersMay 25 2025
To evaluate feasibility of large language models (LLMs) to convert radiologist-generated report summaries into personalized report templates, and assess its impact on scan reporting time and quality. In this retrospective study, 100 CT scans from oncology patients were randomly divided into two equal sets. Two radiologists generated conventional reports for one set and summary reports for the other, and vice versa. Three LLMs - GPT-4, Google Gemini, and Claude Opus - generated complete reports from the summaries using institution-specific generic templates. Two expert radiologists qualitatively evaluated the radiologist summaries and LLM-generated reports using the ACR RADPEER scoring system, using conventional radiologist reports as reference. Reporting time for conventional versus summary-based reports was compared, and LLM-generated reports were analyzed for errors. Quantitative similarity and linguistic metrics were computed to assess report alignment across models with the original radiologist-generated report summaries. Statistical analyses were performed using Python 3.0 to identify significant differences in reporting times, error rates and quantitative metrics. The average reporting time was significantly shorter for summary method (6.76 min) compared to conventional method (8.95 min) (p < 0.005). Among the 100 radiologist summaries, 10 received RADPEER scores worse than 1, with three deemed to have clinically significant discrepancies. Only one LLM-generated report received a worse RADPEER score than its corresponding summary. Error frequencies among LLM-generated reports showed no significant differences across models, with template-related errors being most common (χ<sup>2</sup> = 1.146, p = 0.564). Quantitative analysis indicated significant differences in similarity and linguistic metrics among the three LLMs (p < 0.05), reflecting unique generation patterns. Summary-based scan reporting along with use of LLMs to generate complete personalized report templates can shorten reporting time while maintaining the report quality. However, there remains a need for human oversight to address errors in the generated reports. Summary-based reporting of radiological studies along with the use of large language models to generate tailored reports using generic templates has the potential to make the workflow more efficient by shortening the reporting time while maintaining the quality of reporting.

Evaluation of synthetic training data for 3D intraoral reconstruction of cleft patients from single images.

Lingens L, Lill Y, Nalabothu P, Benitez BK, Mueller AA, Gross M, Solenthaler B

pubmed logopapersMay 24 2025
This study investigates the effectiveness of synthetic training data in predicting 2D landmarks for 3D intraoral reconstruction in cleft lip and palate patients. We take inspiration from existing landmark prediction and 3D reconstruction techniques for faces and demonstrate their potential in medical applications. We generated both real and synthetic datasets from intraoral scans and videos. A convolutional neural network was trained using a negative-Gaussian log-likelihood loss function to predict 2D landmarks and their corresponding confidence scores. The predicted landmarks were then used to fit a statistical shape model to generate 3D reconstructions from individual images. We analyzed the model's performance on real patient data and explored the dataset size required to overcome the domain gap between synthetic and real images. Our approach generates satisfying results on synthetic data and shows promise when tested on real data. The method achieves rapid 3D reconstruction from single images and can therefore provide significant value in day-to-day medical work. Our results demonstrate that synthetic training data are viable for training models to predict 2D landmarks and reconstruct 3D meshes in patients with cleft lip and palate. This approach offers an accessible, low-cost alternative to traditional methods, using smartphone technology for noninvasive, rapid, and accurate 3D reconstructions in clinical settings.

Explainable deep learning for age and gender estimation in dental CBCT scans using attention mechanisms and multi task learning.

Pishghadam N, Esmaeilyfard R, Paknahad M

pubmed logopapersMay 24 2025
Accurate and interpretable age estimation and gender classification are essential in forensic and clinical diagnostics, particularly when using high-dimensional medical imaging data such as Cone Beam Computed Tomography (CBCT). Traditional CBCT-based approaches often suffer from high computational costs and limited interpretability, reducing their applicability in forensic investigations. This study aims to develop a multi-task deep learning framework that enhances both accuracy and explainability in CBCT-based age estimation and gender classification using attention mechanisms. We propose a multi-task learning (MTL) model that simultaneously estimates age and classifies gender using panoramic slices extracted from CBCT scans. To improve interpretability, we integrate Convolutional Block Attention Module (CBAM) and Grad-CAM visualization, highlighting relevant craniofacial regions. The dataset includes 2,426 CBCT images from individuals aged 7 to 23 years, and performance is assessed using Mean Absolute Error (MAE) for age estimation and accuracy for gender classification. The proposed model achieves a MAE of 1.08 years for age estimation and 95.3% accuracy in gender classification, significantly outperforming conventional CBCT-based methods. CBAM enhances the model's ability to focus on clinically relevant anatomical features, while Grad-CAM provides visual explanations, improving interpretability. Additionally, using panoramic slices instead of full 3D CBCT volumes reduces computational costs without sacrificing accuracy. Our framework improves both accuracy and interpretability in forensic age estimation and gender classification from CBCT images. By incorporating explainable AI techniques, this model provides a computationally efficient and clinically interpretable tool for forensic and medical applications.
Page 26 of 36351 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.