Sort by:
Page 25 of 1331328 results

Towards Interactive Lesion Segmentation in Whole-Body PET/CT with Promptable Models

Maximilian Rokuss, Yannick Kirchhoff, Fabian Isensee, Klaus H. Maier-Hein

arxiv logopreprintAug 29 2025
Whole-body PET/CT is a cornerstone of oncological imaging, yet accurate lesion segmentation remains challenging due to tracer heterogeneity, physiological uptake, and multi-center variability. While fully automated methods have advanced substantially, clinical practice benefits from approaches that keep humans in the loop to efficiently refine predicted masks. The autoPET/CT IV challenge addresses this need by introducing interactive segmentation tasks based on simulated user prompts. In this work, we present our submission to Task 1. Building on the winning autoPET III nnU-Net pipeline, we extend the framework with promptable capabilities by encoding user-provided foreground and background clicks as additional input channels. We systematically investigate representations for spatial prompts and demonstrate that Euclidean Distance Transform (EDT) encodings consistently outperform Gaussian kernels. Furthermore, we propose online simulation of user interactions and a custom point sampling strategy to improve robustness under realistic prompting conditions. Our ensemble of EDT-based models, trained with and without external data, achieves the strongest cross-validation performance, reducing both false positives and false negatives compared to baseline models. These results highlight the potential of promptable models to enable efficient, user-guided segmentation workflows in multi-tracer, multi-center PET/CT. Code is publicly available at https://github.com/MIC-DKFZ/autoPET-interactive

A Multi-Stage Fine-Tuning and Ensembling Strategy for Pancreatic Tumor Segmentation in Diagnostic and Therapeutic MRI

Omer Faruk Durugol, Maximilian Rokuss, Yannick Kirchhoff, Klaus H. Maier-Hein

arxiv logopreprintAug 29 2025
Automated segmentation of Pancreatic Ductal Adenocarcinoma (PDAC) from MRI is critical for clinical workflows but is hindered by poor tumor-tissue contrast and a scarcity of annotated data. This paper details our submission to the PANTHER challenge, addressing both diagnostic T1-weighted (Task 1) and therapeutic T2-weighted (Task 2) segmentation. Our approach is built upon the nnU-Net framework and leverages a deep, multi-stage cascaded pre-training strategy, starting from a general anatomical foundation model and sequentially fine-tuning on CT pancreatic lesion datasets and the target MRI modalities. Through extensive five-fold cross-validation, we systematically evaluated data augmentation schemes and training schedules. Our analysis revealed a critical trade-off, where aggressive data augmentation produced the highest volumetric accuracy, while default augmentations yielded superior boundary precision (achieving a state-of-the-art MASD of 5.46 mm and HD95 of 17.33 mm for Task 1). For our final submission, we exploited this finding by constructing custom, heterogeneous ensembles of specialist models, essentially creating a mix of experts. This metric-aware ensembling strategy proved highly effective, achieving a top cross-validation Tumor Dice score of 0.661 for Task 1 and 0.523 for Task 2. Our work presents a robust methodology for developing specialized, high-performance models in the context of limited data and complex medical imaging tasks (Team MIC-DKFZ).

Privacy-preserving federated transfer learning for enhanced liver lesion segmentation in PET-CT imaging.

Kumar R, Zeng S, Kumar J, Mao X

pubmed logopapersAug 28 2025
Positron Emission Tomography-Computed Tomography (PET-CT) evolution is critical for liver lesion diagnosis. However, data scarcity, privacy concerns, and cross-institutional imaging heterogeneity impede accurate deep learning model deployment. We propose a Federated Transfer Learning (FTL) framework that integrates federated learning's privacy-preserving collaboration with transfer learning's pre-trained model adaptation, enhancing liver lesion segmentation in PET-CT imaging. By leveraging a Feature Co-learning Block (FCB) and privacy-enhancing technologies (DP, HE), our approach ensures robust segmentation without sharing sensitive patient data. (1) A privacy-preserving FTL framework combining federated learning and adaptive transfer learning; (2) A multi-modal FCB for improved PET-CT feature integration; (3) Extensive evaluation across diverse institutions with privacy-enhancing technologies like Differential Privacy (DP) and Homomorphic Encryption (HE). Experiments on simulated multi-institutional PET-CT datasets demonstrate superior performance compared to baselines, with robust privacy guarantees. The FTL framework reduces data requirements and enhances generalizability, advancing liver lesion diagnostics.

Learning What is Worth Learning: Active and Sequential Domain Adaptation for Multi-modal Gross Tumor Volume Segmentation

Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li

arxiv logopreprintAug 28 2025
Accurate gross tumor volume segmentation on multi-modal medical data is critical for radiotherapy planning in nasopharyngeal carcinoma and glioblastoma. Recent advances in deep neural networks have brought promising results in medical image segmentation, leading to an increasing demand for labeled data. Since labeling medical images is time-consuming and labor-intensive, active learning has emerged as a solution to reduce annotation costs by selecting the most informative samples to label and adapting high-performance models with as few labeled samples as possible. Previous active domain adaptation (ADA) methods seek to minimize sample redundancy by selecting samples that are farthest from the source domain. However, such one-off selection can easily cause negative transfer, and access to source medical data is often limited. Moreover, the query strategy for multi-modal medical data remains unexplored. In this work, we propose an active and sequential domain adaptation framework for dynamic multi-modal sample selection in ADA. We derive a query strategy to prioritize labeling and training on the most valuable samples based on their informativeness and representativeness. Empirical validation on diverse gross tumor volume segmentation tasks demonstrates that our method achieves favorable segmentation performance, significantly outperforming state-of-the-art ADA methods. Code is available at the git repository: \href{https://github.com/Hiyoochan/mmActS}{mmActS}.

Enhancing Corpus Callosum Segmentation in Fetal MRI via Pathology-Informed Domain Randomization

Marina Grifell i Plana, Vladyslav Zalevskyi, Léa Schmidt, Yvan Gomez, Thomas Sanchez, Vincent Dunet, Mériam Koob, Vanessa Siffredi, Meritxell Bach Cuadra

arxiv logopreprintAug 28 2025
Accurate fetal brain segmentation is crucial for extracting biomarkers and assessing neurodevelopment, especially in conditions such as corpus callosum dysgenesis (CCD), which can induce drastic anatomical changes. However, the rarity of CCD severely limits annotated data, hindering the generalization of deep learning models. To address this, we propose a pathology-informed domain randomization strategy that embeds prior knowledge of CCD manifestations into a synthetic data generation pipeline. By simulating diverse brain alterations from healthy data alone, our approach enables robust segmentation without requiring pathological annotations. We validate our method on a cohort comprising 248 healthy fetuses, 26 with CCD, and 47 with other brain pathologies, achieving substantial improvements on CCD cases while maintaining performance on both healthy fetuses and those with other pathologies. From the predicted segmentations, we derive clinically relevant biomarkers, such as corpus callosum length (LCC) and volume, and show their utility in distinguishing CCD subtypes. Our pathology-informed augmentation reduces the LCC estimation error from 1.89 mm to 0.80 mm in healthy cases and from 10.9 mm to 0.7 mm in CCD cases. Beyond these quantitative gains, our approach yields segmentations with improved topological consistency relative to available ground truth, enabling more reliable shape-based analyses. Overall, this work demonstrates that incorporating domain-specific anatomical priors into synthetic data pipelines can effectively mitigate data scarcity and enhance analysis of rare but clinically significant malformations.

Dino U-Net: Exploiting High-Fidelity Dense Features from Foundation Models for Medical Image Segmentation

Yifan Gao, Haoyue Li, Feng Yuan, Xiaosong Wang, Xin Gao

arxiv logopreprintAug 28 2025
Foundation models pre-trained on large-scale natural image datasets offer a powerful paradigm for medical image segmentation. However, effectively transferring their learned representations for precise clinical applications remains a challenge. In this work, we propose Dino U-Net, a novel encoder-decoder architecture designed to exploit the high-fidelity dense features of the DINOv3 vision foundation model. Our architecture introduces an encoder built upon a frozen DINOv3 backbone, which employs a specialized adapter to fuse the model's rich semantic features with low-level spatial details. To preserve the quality of these representations during dimensionality reduction, we design a new fidelity-aware projection module (FAPM) that effectively refines and projects the features for the decoder. We conducted extensive experiments on seven diverse public medical image segmentation datasets. Our results show that Dino U-Net achieves state-of-the-art performance, consistently outperforming previous methods across various imaging modalities. Our framework proves to be highly scalable, with segmentation accuracy consistently improving as the backbone model size increases up to the 7-billion-parameter variant. The findings demonstrate that leveraging the superior, dense-pretrained features from a general-purpose foundation model provides a highly effective and parameter-efficient approach to advance the accuracy of medical image segmentation. The code is available at https://github.com/yifangao112/DinoUNet.

PET/CT radiomics for non-invasive prediction of immunotherapy efficacy in cervical cancer.

Du T, Li C, Grzegozek M, Huang X, Rahaman M, Wang X, Sun H

pubmed logopapersAug 28 2025
PurposeThe prediction of immunotherapy efficacy in cervical cancer patients remains a critical clinical challenge. This study aims to develop and validate a deep learning-based automatic tumor segmentation method on PET/CT images, extract texture features from the tumor regions in cervical cancer patients, and investigate their correlation with PD-L1 expression. Furthermore, a predictive model for immunotherapy efficacy will be constructed.MethodsWe retrospectively collected data from 283 pathologically confirmed cervical cancer patients who underwent <sup>18</sup>F-FDG PET/CT examinations, divided into three subsets. Subset-I (n = 97) was used to develop a deep learning-based segmentation model using Attention-UNet and region-growing methods on co-registered PET/CT images. Subset-II (n = 101) was used to explore correlations between radiomic features and PD-L1 expression. Subset-III (n = 85) was used to construct and validate a radiomic model for predicting immunotherapy response.ResultsUsing Subset-I, a segmentation model was developed. The segmentation model achieved optimal performance at the 94th epoch with an IoU of 0.746 in the validation set. Manual evaluation confirmed accurate tumor localization. Sixteen features demonstrated excellent reproducibility (ICC > 0.75). Using Subset-II, PD-L1-correlated features were extracted and identified. In Subset-II, 183 features showed significant correlations with PD-L1 expression (P < 0.05).Using these features in Subset-III, a predictive model for immunotherapy efficacy was constructed and evaluated. In Subset-III, the SVM-based radiomic model achieved the best predictive performance with an AUC of 0.935.ConclusionWe validated, respectively in Subset-I, Subset-II, and Subset-III, that deep learning models incorporating medical prior knowledge can accurately and automatically segment cervical cancer lesions, that texture features extracted from <sup>18</sup>F-FDG PET/CT are significantly associated with PD-L1 expression, and that predictive models based on these features can effectively predict the efficacy of PD-L1 immunotherapy. This approach offers a non-invasive, efficient, and cost-effective tool for guiding individualized immunotherapy in cervical cancer patients and may help reduce patient burden, accelerate treatment planning.

Perivascular inflammation in the progression of aortic aneurysms in Marfan syndrome.

Sowa H, Yagi H, Ueda K, Hashimoto M, Karasaki K, Liu Q, Kurozumi A, Adachi Y, Yanase T, Okamura S, Zhai B, Takeda N, Ando M, Yamauchi H, Ito N, Ono M, Akazawa H, Komuro I

pubmed logopapersAug 28 2025
Inflammation plays important roles in the pathogenesis of vascular diseases. We here show the involvement of perivascular inflammation in aortic dilatation of Marfan syndrome (MFS). In the aorta of MFS patients and Fbn1C1041G/+ mice, macrophages markedly accumulated in periaortic tissues with increased inflammatory cytokine expression. Metabolic inflammatory stress induced by a high-fat diet (HFD) enhanced vascular inflammation predominantly in periaortic tissues and accelerated aortic dilatation in Fbn1C1041G/+ mice, both of which were inhibited by low-dose pitavastatin. HFD feeding also intensifies structural disorganization of the tunica media in Fbn1C1041G/+ mice, including elastic fiber fragmentation, fibrosis, and proteoglycan accumulation, along with increased activation of TGF-β downstream targets. Pitavastatin treatment mitigated these alterations. For non-invasive assessment of PVAT inflammation in a clinical setting, we developed an automated analysis program for CT images using machine learning techniques to calculate the perivascular fat attenuation index of the ascending aorta (AA-FAI), correlating with periaortic fat inflammation. The AA-FAI was significantly higher in patients with MFS compared to patients without hereditary connective tissue disorders. These results suggest that perivascular inflammation contributes to aneurysm formation in MFS and might be a potential target for preventing and treating vascular events in MFS.

Nasopharyngeal cancer adaptive radiotherapy with CBCT-derived synthetic CT: deep learning-based auto-segmentation precision and dose calculation consistency on a C-Arm linac.

Lei W, Han L, Cao Z, Duan T, Wang B, Li C, Pei X

pubmed logopapersAug 28 2025
To evaluate the precision of automated segmentation facilitated by deep learning (DL) and dose calculation in adaptive radiotherapy (ART) for nasopharyngeal cancer (NPC), leveraging synthetic CT (sCT) images derived from cone-beam CT (CBCT) scans on a conventional C-arm linac. Sixteen NPC patients undergoing a two-phase offline ART were analyzed retrospectively. The initial (pCT<sub>1</sub>) and adaptive (pCT<sub>2</sub>) CT scans served as gold standard alongside weekly acquired CBCT scans. Patient data, including manually delineated contours and dose information, were imported into ArcherQA. Using a cycle-consistent generative adversarial network (cycle-GAN) trained on an independent dataset, sCT images (sCT<sub>1</sub>, sCT<sub>4</sub>, sCT<sub>4</sub><sup>*</sup>) were generated from weekly CBCT scans (CBCT<sub>1</sub>, CBCT<sub>4</sub>, CBCT<sub>4</sub>) paired with corresponding planning CTs (pCT<sub>1</sub>, pCT<sub>1</sub>, pCT<sub>2</sub>). Auto-segmentation was performed on sCTs, followed by GPU-accelerated Monte Carlo dose recalculation. Auto-segmentation accuracy was assessed via Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD<sub>95</sub>). Dose calculation fidelity on sCTs was evaluated using dose-volume parameters. Dosimetric consistency between recalculated sCT and pCT plans was analyzed via Spearman's correlation, while volumetric changes were concurrently evaluated to quantify anatomical variations. Most anatomical structures demonstrated high pCT-sCT agreement, with mean values of DSC > 0.85 and HD<sub>95</sub> < 5.10 mm. Notable exceptions included the primary Gross Tumor Volume (GTVp) in the pCT<sub>2</sub>-sCT<sub>4</sub> comparison (DSC: 0.75, HD<sub>95</sub>: 6.03 mm), involved lymph node (GTVn) showing lower agreement (DSC: 0.43, HD<sub>95</sub>: 16.42 mm), and submandibular glands with moderate agreement (DSC: 0.64-0.73, HD<sub>95</sub>: 4.45-5.66 mm). Dosimetric analysis revealed the largest mean differences in GTVn D<sub>99</sub>: -1.44 Gy (95% CI: [-3.01, 0.13] Gy) and right parotid mean dose: -1.94 Gy (95% CI: [-3.33, -0.55] Gy, p < 0.05). Anatomical variations, quantified via sCTs measurements, correlated significantly with offline adaptive plan adjustments in ART. This correlation was strong for parotid glands (ρ > 0.72, p < 0.001), a result that aligned with sCT-derived dose discrepancy analysis (ρ > 0.57, p < 0.05). The proposed method exhibited minor variations in volumetric and dosimetric parameters compared to prior treatment data, suggesting potential efficiency improvements for ART in NPC through reduced human dependency.

AI-driven body composition monitoring and its prognostic role in mCRPC undergoing lutetium-177 PSMA radioligand therapy: insights from a retrospective single-center analysis.

Ruhwedel T, Rogasch J, Galler M, Schatka I, Wetz C, Furth C, Biernath N, De Santis M, Shnayien S, Kolck J, Geisel D, Amthauer H, Beetz NL

pubmed logopapersAug 28 2025
Body composition (BC) analysis is performed to quantify the relative amounts of different body tissues as a measure of physical fitness and tumor cachexia. We hypothesized that relative changes in body composition (BC) parameters, assessed by an artificial intelligence-based, PACS-integrated software, between baseline imaging before the start of radioligand therapy (RLT) and interim staging after two RLT cycles could predict overall survival (OS) in patients with metastatic castration-resistant prostate cancer. We conducted a single-center, retrospective analysis of 92 patients with mCRPC undergoing [<sup>177</sup>Lu]Lu-PSMA RLT between September 2015 and December 2023. All patients had [<sup>68</sup> Ga]Ga-PSMA-11 PET/CT at baseline (≤ 6 weeks before the first RLT cycle) and at interim staging (6-8 weeks after the second RLT cycle) allowing for longitudinal BC assessment. During follow-up, 78 patients (85%) died. Median OS was 16.3 months. Median follow-up time in survivors was 25.6 months. The 1 year mortality rate was 32.6% (95%CI 23.0-42.2%) and the 5 year mortality rate was 92.9% (95%CI 85.8-100.0%). In multivariable regression, relative change in visceral adipose tissue (VAT) (HR: 0.26; p = 0.006), previous chemotherapy of any type (HR: 2.4; p = 0.003), the presence of liver metastases (HR: 2.4; p = 0.018) and a higher baseline De Ritis ratio (HR: 1.4; p < 0.001) remained independent predictors of OS. Patients with a higher decrease in VAT (< -20%) had a median OS of 10.2 months versus 18.5 months in patients with a lower VAT decrease or VAT increase (≥ -20%) (log-rank test: p = 0.008). In a separate Cox model, the change in VAT predicted OS (p = 0.005) independent of the best PSA response after 1-2 RLT cycles (p = 0.09), and there was no interaction between the two (p = 0.09). PACS-Integrated, AI-based BC monitoring detects relative changes in the VAT, Which was an independent predictor of shorter OS in our population of patients undergoing RLT.
Page 25 of 1331328 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.