Sort by:
Page 237 of 3903899 results

Development and validation of a SOTA-based system for biliopancreatic segmentation and station recognition system in EUS.

Zhang J, Zhang J, Chen H, Tian F, Zhang Y, Zhou Y, Jiang Z

pubmed logopapersJun 23 2025
Endoscopic ultrasound (EUS) is a vital tool for diagnosing biliopancreatic disease, offering detailed imaging to identify key abnormalities. Its interpretation demands expertise, which limits its accessibility for less trained practitioners. Thus, the creation of tools or systems to assist in interpreting EUS images is crucial for improving diagnostic accuracy and efficiency. To develop an AI-assisted EUS system for accurate pancreatic and biliopancreatic duct segmentation, and evaluate its impact on endoscopists' ability to identify biliary-pancreatic diseases during segmentation and anatomical localization. The EUS-AI system was designed to perform station positioning and anatomical structure segmentation. A total of 45,737 EUS images from 1852 patients were used for model training. Among them, 2881 images were for internal testing, and 2747 images from 208 patients were for external validation. Additionally, 340 images formed a man-machine competition test set. During the research process, various newer state-of-the-art (SOTA) deep learning algorithms were also compared. In classification, in the station recognition task, compared to the ResNet-50 and YOLOv8-CLS algorithms, the Mean Teacher algorithm achieved the highest accuracy, with an average of 95.60% (92.07%-99.12%) in the internal test set and 92.72% (88.30%-97.15%) in the external test set. For segmentation, compared to the UNet ++ and YOLOv8 algorithms, the U-Net v2 algorithm was optimal. Ultimately, the EUS-AI system was constructed using the optimal models from two tasks, and a man-machine competition experiment was conducted. The results demonstrated that the performance of the EUS-AI system significantly outperformed that of mid-level endoscopists, both in terms of position recognition (p < 0.001) and pancreas and biliopancreatic duct segmentation tasks (p < 0.001, p = 0.004). The EUS-AI system is expected to significantly shorten the learning curve for the pancreatic EUS examination and enhance procedural standardization.

Intelligent Virtual Dental Implant Placement via 3D Segmentation Strategy.

Cai G, Wen B, Gong Z, Lin Y, Liu H, Zeng P, Shi M, Wang R, Chen Z

pubmed logopapersJun 23 2025
Virtual dental implant placement in cone-beam computed tomography (CBCT) is a prerequisite for digital implant surgery, carrying clinical significance. However, manual placement is a complex process that should meet clinical essential requirements of restoration orientation, bone adaptation, and anatomical safety. This complexity presents challenges in balancing multiple considerations comprehensively and automating the entire workflow efficiently. This study aims to achieve intelligent virtual dental implant placement through a 3-dimensional (3D) segmentation strategy. Focusing on the missing mandibular first molars, we developed a segmentation module based on nnU-Net to generate the virtual implant from the edentulous region of CBCT and employed an approximation module for mathematical optimization. The generated virtual implant was integrated with the original CBCT to meet clinical requirements. A total of 190 CBCT scans from 4 centers were collected for model development and testing. This tool segmented the virtual implant with a surface Dice coefficient (sDice) of 0.903 and 0.884 on internal and external testing sets. Compared to the ground truth, the average deviations of the implant platform, implant apex, and angle were 0.850 ± 0.554 mm, 1.442 ± 0.539 mm, and 4.927 ± 3.804° on the internal testing set and 0.822 ± 0.353 mm, 1.467 ± 0.560 mm, and 5.517 ± 2.850° on the external testing set, respectively. The 3D segmentation-based artificial intelligence tool demonstrated good performance in predicting both the dimension and position of the virtual implants, showing significant clinical application potential in implant planning.

BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity

Moein Khajehnejad, Forough Habibollahi, Adeel Razi

arxiv logopreprintJun 23 2025
Existing foundation models for neuroimaging are often prohibitively large and data-intensive. We introduce BrainSymphony, a lightweight, parameter-efficient foundation model that achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets. BrainSymphony's strong multimodal architecture processes functional MRI data through parallel spatial and temporal transformer streams, which are then efficiently distilled into a unified representation by a Perceiver module. Concurrently, it models structural connectivity from diffusion MRI using a novel signed graph transformer to encode the brain's anatomical structure. These powerful, modality-specific representations are then integrated via an adaptive fusion gate. Despite its compact design, our model consistently outperforms larger models on a diverse range of downstream benchmarks, including classification, prediction, and unsupervised network identification tasks. Furthermore, our model revealed novel insights into brain dynamics using attention maps on a unique external psilocybin neuroimaging dataset (pre- and post-administration). BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts, paving the way for more accessible and powerful research in computational neuroscience.

Rethinking Decoder Design: Improving Biomarker Segmentation Using Depth-to-Space Restoration and Residual Linear Attention

Saad Wazir, Daeyoung Kim

arxiv logopreprintJun 23 2025
Segmenting biomarkers in medical images is crucial for various biotech applications. Despite advances, Transformer and CNN based methods often struggle with variations in staining and morphology, limiting feature extraction. In medical image segmentation, where datasets often have limited sample availability, recent state-of-the-art (SOTA) methods achieve higher accuracy by leveraging pre-trained encoders, whereas end-to-end methods tend to underperform. This is due to challenges in effectively transferring rich multiscale features from encoders to decoders, as well as limitations in decoder efficiency. To address these issues, we propose an architecture that captures multi-scale local and global contextual information and a novel decoder design, which effectively integrates features from the encoder, emphasizes important channels and regions, and reconstructs spatial dimensions to enhance segmentation accuracy. Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies. Specifically, our method achieves absolute performance gains of 2.76% on MoNuSeg, 3.12% on DSB, 2.87% on Electron Microscopy, and 4.03% on TNBC datasets compared to existing SOTA methods. Code: https://github.com/saadwazir/MCADS-Decoder

SafeClick: Error-Tolerant Interactive Segmentation of Any Medical Volumes via Hierarchical Expert Consensus

Yifan Gao, Jiaxi Sheng, Wenbin Wu, Haoyue Li, Yaoxian Dong, Chaoyang Ge, Feng Yuan, Xin Gao

arxiv logopreprintJun 23 2025
Foundation models for volumetric medical image segmentation have emerged as powerful tools in clinical workflows, enabling radiologists to delineate regions of interest through intuitive clicks. While these models demonstrate promising capabilities in segmenting previously unseen anatomical structures, their performance is strongly influenced by prompt quality. In clinical settings, radiologists often provide suboptimal prompts, which affects segmentation reliability and accuracy. To address this limitation, we present SafeClick, an error-tolerant interactive segmentation approach for medical volumes based on hierarchical expert consensus. SafeClick operates as a plug-and-play module compatible with foundation models including SAM 2 and MedSAM 2. The framework consists of two key components: a collaborative expert layer (CEL) that generates diverse feature representations through specialized transformer modules, and a consensus reasoning layer (CRL) that performs cross-referencing and adaptive integration of these features. This architecture transforms the segmentation process from a prompt-dependent operation to a robust framework capable of producing accurate results despite imperfect user inputs. Extensive experiments across 15 public datasets demonstrate that our plug-and-play approach consistently improves the performance of base foundation models, with particularly significant gains when working with imperfect prompts. The source code is available at https://github.com/yifangao112/SafeClick.

Adaptive Mask-guided K-space Diffusion for Accelerated MRI Reconstruction

Qinrong Cai, Yu Guan, Zhibo Chen, Dong Liang, Qiuyun Fan, Qiegen Liu

arxiv logopreprintJun 23 2025
As the deep learning revolution marches on, masked modeling has emerged as a distinctive approach that involves predicting parts of the original data that are proportionally masked during training, and has demonstrated exceptional performance in multiple fields. Magnetic Resonance Imaging (MRI) reconstruction is a critical task in medical imaging that seeks to recover high-quality images from under-sampled k-space data. However, previous MRI reconstruction strategies usually optimized the entire image domain or k-space, without considering the importance of different frequency regions in the k-space This work introduces a diffusion model based on adaptive masks (AMDM), which utilizes the adaptive adjustment of frequency distribution based on k-space data to develop a hybrid masks mechanism that adapts to different k-space inputs. This enables the effective separation of high-frequency and low-frequency components, producing diverse frequency-specific representations. Additionally, the k-space frequency distribution informs the generation of adaptive masks, which, in turn, guide a closed-loop diffusion process. Experimental results verified the ability of this method to learn specific frequency information and thereby improved the quality of MRI reconstruction, providing a flexible framework for optimizing k-space data using masks in the future.

CT Radiomics-Based Explainable Machine Learning Model for Accurate Differentiation of Malignant and Benign Endometrial Tumors: A Two-Center Study

Tingrui Zhang, Honglin Wu, Zekun Jiang, Yingying Wang, Rui Ye, Huiming Ni, Chang Liu, Jin Cao, Xuan Sun, Rong Shao, Xiaorong Wei, Yingchun Sun

arxiv logopreprintJun 22 2025
Aimed to develop and validate a CT radiomics-based explainable machine learning model for diagnosing malignancy and benignity specifically in endometrial cancer (EC) patients. A total of 83 EC patients from two centers, including 46 with malignant and 37 with benign conditions, were included, with data split into a training set (n=59) and a testing set (n=24). The regions of interest (ROIs) were manually segmented from pre-surgical CT scans, and 1132 radiomic features were extracted from the pre-surgical CT scans using Pyradiomics. Six explainable machine learning modeling algorithms were implemented respectively, for determining the optimal radiomics pipeline. The diagnostic performance of the radiomic model was evaluated by using sensitivity, specificity, accuracy, precision, F1 score, confusion matrices, and ROC curves. To enhance clinical understanding and usability, we separately implemented SHAP analysis and feature mapping visualization, and evaluated the calibration curve and decision curve. By comparing six modeling strategies, the Random Forest model emerged as the optimal choice for diagnosing EC, with a training AUC of 1.00 and a testing AUC of 0.96. SHAP identified the most important radiomic features, revealing that all selected features were significantly associated with EC (P < 0.05). Radiomics feature maps also provide a feasible assessment tool for clinical applications. DCA indicated a higher net benefit for our model compared to the "All" and "None" strategies, suggesting its clinical utility in identifying high-risk cases and reducing unnecessary interventions. In conclusion, the CT radiomics-based explainable machine learning model achieved high diagnostic performance, which could be used as an intelligent auxiliary tool for the diagnosis of endometrial cancer.

Training-free Test-time Improvement for Explainable Medical Image Classification

Hangzhou He, Jiachen Tang, Lei Zhu, Kaiwen Li, Yanye Lu

arxiv logopreprintJun 22 2025
Deep learning-based medical image classification techniques are rapidly advancing in medical image analysis, making it crucial to develop accurate and trustworthy models that can be efficiently deployed across diverse clinical scenarios. Concept Bottleneck Models (CBMs), which first predict a set of explainable concepts from images and then perform classification based on these concepts, are increasingly being adopted for explainable medical image classification. However, the inherent explainability of CBMs introduces new challenges when deploying trained models to new environments. Variations in imaging protocols and staining methods may induce concept-level shifts, such as alterations in color distribution and scale. Furthermore, since CBM training requires explicit concept annotations, fine-tuning models solely with image-level labels could compromise concept prediction accuracy and faithfulness - a critical limitation given the high cost of acquiring expert-annotated concept labels in medical domains. To address these challenges, we propose a training-free confusion concept identification strategy. By leveraging minimal new data (e.g., 4 images per class) with only image-level labels, our approach enhances out-of-domain performance without sacrificing source domain accuracy through two key operations: masking misactivated confounding concepts and amplifying under-activated discriminative concepts. The efficacy of our method is validated on both skin and white blood cell images. Our code is available at: https://github.com/riverback/TF-TTI-XMed.

Deep Learning-based Alignment Measurement in Knee Radiographs

Zhisen Hu, Dominic Cullen, Peter Thompson, David Johnson, Chang Bian, Aleksei Tiulpin, Timothy Cootes, Claudia Lindner

arxiv logopreprintJun 22 2025
Radiographic knee alignment (KA) measurement is important for predicting joint health and surgical outcomes after total knee replacement. Traditional methods for KA measurements are manual, time-consuming and require long-leg radiographs. This study proposes a deep learning-based method to measure KA in anteroposterior knee radiographs via automatically localized knee anatomical landmarks. Our method builds on hourglass networks and incorporates an attention gate structure to enhance robustness and focus on key anatomical features. To our knowledge, this is the first deep learning-based method to localize over 100 knee anatomical landmarks to fully outline the knee shape while integrating KA measurements on both pre-operative and post-operative images. It provides highly accurate and reliable anatomical varus/valgus KA measurements using the anatomical tibiofemoral angle, achieving mean absolute differences ~1{\deg} when compared to clinical ground truth measurements. Agreement between automated and clinical measurements was excellent pre-operatively (intra-class correlation coefficient (ICC) = 0.97) and good post-operatively (ICC = 0.86). Our findings demonstrate that KA assessment can be automated with high accuracy, creating opportunities for digitally enhanced clinical workflows.

Enabling PSO-Secure Synthetic Data Sharing Using Diversity-Aware Diffusion Models

Mischa Dombrowski, Bernhard Kainz

arxiv logopreprintJun 22 2025
Synthetic data has recently reached a level of visual fidelity that makes it nearly indistinguishable from real data, offering great promise for privacy-preserving data sharing in medical imaging. However, fully synthetic datasets still suffer from significant limitations: First and foremost, the legal aspect of sharing synthetic data is often neglected and data regulations, such as the GDPR, are largley ignored. Secondly, synthetic models fall short of matching the performance of real data, even for in-domain downstream applications. Recent methods for image generation have focused on maximising image diversity instead of fidelity solely to improve the mode coverage and therefore the downstream performance of synthetic data. In this work, we shift perspective and highlight how maximizing diversity can also be interpreted as protecting natural persons from being singled out, which leads to predicate singling-out (PSO) secure synthetic datasets. Specifically, we propose a generalisable framework for training diffusion models on personal data which leads to unpersonal synthetic datasets achieving performance within one percentage point of real-data models while significantly outperforming state-of-the-art methods that do not ensure privacy. Our code is available at https://github.com/MischaD/Trichotomy.
Page 237 of 3903899 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.