Sort by:
Page 236 of 3903899 results

Enhancing Lung Cancer Diagnosis: An Optimization-Driven Deep Learning Approach with CT Imaging.

Lakshminarasimha K, Priyeshkumar AT, Karthikeyan M, Sakthivel R

pubmed logopapersJun 23 2025
Lung cancer (LC) remains a leading cause of mortality worldwide, affecting individuals across all genders and age groups. Early and accurate diagnosis is critical for effective treatment and improved survival rates. Computed Tomography (CT) imaging is widely used for LC detection and classification. However, manual identification can be time-consuming and error-prone due to the visual similarities among various LC types. Deep learning (DL) has shown significant promise in medical image analysis. Although numerous studies have investigated LC detection using deep learning techniques, the effective extraction of highly correlated features remains a significant challenge, thereby limiting diagnostic accuracy. Furthermore, most existing models encounter substantial computational complexity and find it difficult to efficiently handle the high-dimensional nature of CT images. This study introduces an optimized CBAM-EfficientNet model to enhance feature extraction and improve LC classification. EfficientNet is utilized to reduce computational complexity, while the Convolutional Block Attention Module (CBAM) emphasizes essential spatial and channel features. Additionally, optimization algorithms including Gray Wolf Optimization (GWO), Whale Optimization (WO), and the Bat Algorithm (BA) are applied to fine-tune hyperparameters and boost predictive accuracy. The proposed model, integrated with different optimization strategies, is evaluated on two benchmark datasets. The GWO-based CBAM-EfficientNet achieves outstanding classification accuracies of 99.81% and 99.25% on the Lung-PET-CT-Dx and LIDC-IDRI datasets, respectively. Following GWO, the BA-based CBAM-EfficientNet achieves 99.44% and 98.75% accuracy on the same datasets. Comparative analysis highlights the superiority of the proposed model over existing approaches, demonstrating strong potential for reliable and automated LC diagnosis. Its lightweight architecture also supports real-time implementation, offering valuable assistance to radiologists in high-demand clinical environments.

Enabling Early Identification of Malignant Vertebral Compression Fractures via 2.5D Convolutional Neural Network Model with CT Image Analysis.

Huang C, Li E, Hu J, Huang Y, Wu Y, Wu B, Tang J, Yang L

pubmed logopapersJun 23 2025
This study employed a retrospective data analysis approach combined with model development and validation. The present study introduces a 2.5D convolutional neural network (CNN) model leveraging CT imaging to facilitate the early detection of malignant vertebral compression fractures (MVCFs), potentially reducing reliance on invasive biopsies. Vertebral histopathological biopsy is recognized as the gold standard for differentiating between osteoporotic and malignant vertebral compression fractures (VCFs). Nevertheless, its application is restricted due to its invasive nature and high cost, highlighting the necessity for alternative methods to identify MVCFs. The clinical, imaging, and pathological data of patients who underwent vertebral augmentation and biopsy at Institution 1 and Institution 2 were collected and analyzed. Based on the vertebral CT images of these patients, 2D, 2.5D, and 3D CNN models were developed to identify the patients with osteoporotic vertebral compression fractures (OVCF) and MVCF. To verify the clinical application value of the CNN model, two rounds of reader studies were performed. The 2.5D CNN model performed well, and its performance in identifying MVCF patients was significantly superior to that of the 2D and 3D CNN models. In the training dataset, the area under the receiver operating characteristic curve (AUC) of the 2.5D CNN model was 0.996 and an F1 score of 0.915. In the external cohort test, the AUC was 0.815 and an F1 score of 0.714. And clinicians' ability to identify MVCF patients has been enhanced by the 2.5D CNN model. With the assistance of the 2.5D CNN model, the AUC of senior clinicians was 0.882, and the F1 score was 0.774. For junior clinicians, the 2.5D CNN model-assisted AUC was 0.784 and the F1 score was 0.667. The development of our 2.5D CNN model marks a significant step towards non-invasive identification of MVCF patients,. The 2.5D CNN model may be a potential model to assist clinicians in better identifying MVCF patients.

MOSCARD -- Causal Reasoning and De-confounding for Multimodal Opportunistic Screening of Cardiovascular Adverse Events

Jialu Pi, Juan Maria Farina, Rimita Lahiri, Jiwoong Jeong, Archana Gurudu, Hyung-Bok Park, Chieh-Ju Chao, Chadi Ayoub, Reza Arsanjani, Imon Banerjee

arxiv logopreprintJun 23 2025
Major Adverse Cardiovascular Events (MACE) remain the leading cause of mortality globally, as reported in the Global Disease Burden Study 2021. Opportunistic screening leverages data collected from routine health check-ups and multimodal data can play a key role to identify at-risk individuals. Chest X-rays (CXR) provide insights into chronic conditions contributing to major adverse cardiovascular events (MACE), while 12-lead electrocardiogram (ECG) directly assesses cardiac electrical activity and structural abnormalities. Integrating CXR and ECG could offer a more comprehensive risk assessment than conventional models, which rely on clinical scores, computed tomography (CT) measurements, or biomarkers, which may be limited by sampling bias and single modality constraints. We propose a novel predictive modeling framework - MOSCARD, multimodal causal reasoning with co-attention to align two distinct modalities and simultaneously mitigate bias and confounders in opportunistic risk estimation. Primary technical contributions are - (i) multimodal alignment of CXR with ECG guidance; (ii) integration of causal reasoning; (iii) dual back-propagation graph for de-confounding. Evaluated on internal, shift data from emergency department (ED) and external MIMIC datasets, our model outperformed single modality and state-of-the-art foundational models - AUC: 0.75, 0.83, 0.71 respectively. Proposed cost-effective opportunistic screening enables early intervention, improving patient outcomes and reducing disparities.

A Deep Learning Based Method for Fast Registration of Cardiac Magnetic Resonance Images

Benjamin Graham

arxiv logopreprintJun 23 2025
Image registration is used in many medical image analysis applications, such as tracking the motion of tissue in cardiac images, where cardiac kinematics can be an indicator of tissue health. Registration is a challenging problem for deep learning algorithms because ground truth transformations are not feasible to create, and because there are potentially multiple transformations that can produce images that appear correlated with the goal. Unsupervised methods have been proposed to learn to predict effective transformations, but these methods take significantly longer to predict than established baseline methods. For a deep learning method to see adoption in wider research and clinical settings, it should be designed to run in a reasonable time on common, mid-level hardware. Fast methods have been proposed for the task of image registration but often use patch-based methods which can affect registration accuracy for a highly dynamic organ such as the heart. In this thesis, a fast, volumetric registration model is proposed for the use of quantifying cardiac strain. The proposed Deep Learning Neural Network (DLNN) is designed to utilize an architecture that can compute convolutions incredibly efficiently, allowing the model to achieve registration fidelity similar to other state-of-the-art models while taking a fraction of the time to perform inference. The proposed fast and lightweight registration (FLIR) model is used to predict tissue motion which is then used to quantify the non-uniform strain experienced by the tissue. For acquisitions taken from the same patient at approximately the same time, it would be expected that strain values measured between the acquisitions would have very small differences. Using this metric, strain values computed using the FLIR method are shown to be very consistent.

MRI Radiomics and Automated Habitat Analysis Enhance Machine Learning Prediction of Bone Metastasis and High-Grade Gleason Scores in Prostate Cancer.

Yang Y, Zheng B, Zou B, Liu R, Yang R, Chen Q, Guo Y, Yu S, Chen B

pubmed logopapersJun 23 2025
To explore the value of machine learning models based on MRI radiomics and automated habitat analysis in predicting bone metastasis and high-grade pathological Gleason scores in prostate cancer. This retrospective study enrolled 214 patients with pathologically diagnosed prostate cancer from May 2013 to January 2025, including 93 cases with bone metastasis and 159 cases with high-grade Gleason scores. Clinical, pathological and MRI data were collected. An nnUNet model automatically segmented the prostate in MRI scans. K-means clustering identified subregions within the entire prostate in T2-FS images. Senior radiologists manually segmented regions of interest (ROIs) in prostate lesions. Radiomics features were extracted from these habitat subregions and lesion ROIs. These features combined with clinical features were utilized to build multiple machine learning classifiers to predict bone metastasis and high-grade Gleason scores while a K-means clustering method was applied to obtain habitat subregions within the whole prostate. Finally, the models underwent interpretable analysis based on feature importance. The nnUNet model achieved a mean Dice coefficient of 0.970 for segmentation. Habitat analysis using 2 clusters yielded the highest average silhouette coefficient (0.57). Machine learning models based on a combination of lesion radiomics, habitat radiomics, and clinical features achieved the best performance in both prediction tasks. The Extra Trees Classifier achieved the highest AUC (0.900) for predicting bone metastasis, while the CatBoost Classifier performed best (AUC 0.895) for predicting high-grade Gleason scores. The interpretability analysis of the optimal models showed that the PSA clinical feature was crucial for predictions, while both habitat radiomics and lesion radiomics also played important roles. The study proposed an automated prostate habitat analysis for prostate cancer, enabling a comprehensive analysis of tumor heterogeneity. The machine learning models developed achieved excellent performance in predicting the risk of bone metastasis and high-grade Gleason scores in prostate cancer. This approach overcomes the limitations of manual feature extraction, and the inadequate analysis of heterogeneity often encountered in traditional radiomics, thereby improving model performance.

Ensemble-based Convolutional Neural Networks for brain tumor classification in MRI: Enhancing accuracy and interpretability using explainable AI.

Sánchez-Moreno L, Perez-Peña A, Duran-Lopez L, Dominguez-Morales JP

pubmed logopapersJun 23 2025
Accurate and efficient classification of brain tumors, including gliomas, meningiomas, and pituitary adenomas, is critical for early diagnosis and treatment planning. Magnetic resonance imaging (MRI) is a key diagnostic tool, and deep learning models have shown promise in automating tumor classification. However, challenges remain in achieving high accuracy while maintaining interpretability for clinical use. This study explores the use of transfer learning with pre-trained architectures, including VGG16, DenseNet121, and Inception-ResNet-v2, to classify brain tumors from MRI images. An ensemble-based classifier was developed using a majority voting strategy to improve robustness. To enhance clinical applicability, explainability techniques such as Grad-CAM++ and Integrated Gradients were employed, allowing visualization of model decision-making. The ensemble model outperformed individual Convolutional Neural Network (CNN) architectures, achieving an accuracy of 86.17% in distinguishing gliomas, meningiomas, pituitary adenomas, and benign cases. Interpretability techniques provided heatmaps that identified key regions influencing model predictions, aligning with radiological features and enhancing trust in the results. The proposed ensemble-based deep learning framework improves the accuracy and interpretability of brain tumor classification from MRI images. By combining multiple CNN architectures and integrating explainability methods, this approach offers a more reliable and transparent diagnostic tool to support medical professionals in clinical decision-making.

Comparative Analysis of Multimodal Large Language Models GPT-4o and o1 vs Clinicians in Clinical Case Challenge Questions

Jung, J., Kim, H., Bae, S., Park, J. Y.

medrxiv logopreprintJun 23 2025
BackgroundGenerative Pre-trained Transformer 4 (GPT-4) has demonstrated strong performance in standardized medical examinations but has limitations in real-world clinical settings. The newly released multimodal GPT-4o model, which integrates text and image inputs to enhance diagnostic capabilities, and the multimodal o1 model, which incorporates advanced reasoning, may address these limitations. ObjectiveThis study aimed to compare the performance of GPT-4o and o1 against clinicians in real-world clinical case challenges. MethodsThis retrospective, cross-sectional study used Medscape case challenge questions from May 2011 to June 2024 (n = 1,426). Each case included text and images of patient history, physical examination findings, diagnostic test results, and imaging studies. Clinicians were required to choose one answer from among multiple options, with the most frequent response defined as the clinicians decision. Data-based decisions were made using GPT models (3.5 Turbo, 4 Turbo, 4 Omni, and o1) to interpret the text and images, followed by a process to provide a formatted answer. We compared the performances of the clinicians and GPT models using Mixed-effects logistic regression analysis. ResultsOf the 1,426 questions, clinicians achieved an overall accuracy of 85.0%, whereas GPT-4o and o1 demonstrated higher accuracies of 88.4% and 94.3% (mean difference 3.4%; P = .005 and mean difference 9.3%; P < .001), respectively. In the multimodal performance analysis, which included cases involving images (n = 917), GPT-4o achieved an accuracy of 88.3%, and o1 achieved 93.9%, both significantly outperforming clinicians (mean difference 4.2%; P = .005 and mean difference 9.8%; P < .001). o1 showed the highest accuracy across all question categories, achieving 92.6% in diagnosis (mean difference 14.5%; P < .001), 97.0% in disease characteristics (mean difference 7.2%; P < .001), 92.6% in examination (mean difference 7.3%; P = .002), and 94.8% in treatment (mean difference 4.3%; P = .005), consistently outperforming clinicians. In terms of medical specialty, o1 achieved 93.6% accuracy in internal medicine (mean difference 10.3%; P < .001), 96.6% in major surgery (mean difference 9.2%; P = .030), 97.3% in psychiatry (mean difference 10.6%; P = .030), and 95.4% in minor specialties (mean difference 10.0%; P < .001), significantly surpassing clinicians. Across five trials, GPT-4o and o1 provided the correct answer 5/5 times in 86.2% and 90.7% of the cases, respectively. ConclusionsThe GPT-4o and o1 models achieved higher accuracy than clinicians in clinical case challenge questions, particularly in disease diagnosis. The GPT-4o and o1 could serve as valuable tools to assist healthcare professionals in clinical settings.

Self-Supervised Optimization of RF Data Coherence for Improving Breast Reflection UCT Reconstruction.

He L, Liu Z, Cai Y, Zhang Q, Zhou L, Yuan J, Xu Y, Ding M, Yuchi M, Qiu W

pubmed logopapersJun 23 2025
Reflection Ultrasound Computed Tomography (UCT) is gaining prominence as an essential instrument for breast cancer screening. However, reflection UCT quality is often compromised by the variability in sound speed across breast tissue. Traditionally, reflection UCT utilizes the Delay and Sum (DAS) algorithm, where the Time of Flight significantly affects the coherence of the reflected radio frequency (RF) data, based on an oversimplified assumption of uniform sound speed. This study introduces three meticulously engineered modules that leverage the spatial correlation of receiving arrays to improve the coherence of RF data and enable more effective summation. These modules include the self-supervised blind RF data segment block (BSegB) and the state-space model-based strong reflection prediction block (SSM-SRP), followed by a polarity-based adaptive replacing refinement (PARR) strategy to suppress sidelobe noise caused by aperture narrowing. To assess the effectiveness of our method, we utilized standard image quality metrics, including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Root Mean Squared Error (RMSE). Additionally, coherence factor (CF) and variance (Var) were employed to verify the method's ability to enhance signal coherence at the RF data level. The findings reveal that our approach greatly improves performance, achieving an average PSNR of 19.64 dB, an average SSIM of 0.71, and an average RMSE of 0.10, notably under conditions of sparse transmission. The conducted experimental analyses affirm the superior performance of our framework compared to alternative enhancement strategies, including adaptive beamforming methods and deep learning-based beamforming approaches.

DCLNet: Double Collaborative Learning Network on Stationary-Dynamic Functional Brain Network for Brain Disease Classification.

Zhou J, Jie B, Wang Z, Zhang Z, Bian W, Yang Y, Li H, Sun F, Liu M

pubmed logopapersJun 23 2025
Stationary functional brain networks (sFBNs) and dynamic functional brain networks (dFBNs) derived from resting-state functional MRI characterize the complex interactions of the human brain from different aspects and could offer complementary information for brain disease analysis. Most current studies focus on sFBN or dFBN analysis, thus limiting the performance of brain network analysis. A few works have explored integrating sFBN and dFBN to identify brain diseases, and achieved better performance than conventional methods. However, these studies still ignore some valuable discriminative information, such as the distribution information of subjects between and within categories. This paper presents a Double Collaborative Learning Network (DCLNet), which takes advantage of both collaborative encoder and collaborative contrastive learning, to learn complementary information of sFBN and dFBN and distribution information of subjects between inter- and intra-categories for brain disease classification. Specifically, we first construct sFBN and dFBN using traditional correlation-based methods with rs-fMRI data, respectively. Then, we build a collaborative encoder to extract brain network features at different levels (i.e., connectivity-based, brain-region-based, and brain-network-based features), and design a prune-graft transformer module to embed the complementary information of the features at each level between two kinds of FBNs. We also develop a collaborative contrastive learning module to capture the distribution information of subjects between and within different categories, thereby learning the more discriminative features of brain networks. We evaluate the DCLNet on two real brain disease datasets with rs-fMRI data, with experimental results demonstrating the superiority of the proposed method.

Chest X-ray Foundation Model with Global and Local Representations Integration.

Yang Z, Xu X, Zhang J, Wang G, Kalra MK, Yan P

pubmed logopapersJun 23 2025
Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrained CheXFound on a curated CXR-987K dataset, comprising over approximately 987K unique CXRs from 12 publicly available sources. We propose a Global and Local Representations Integration (GLoRI) head for downstream adaptations, by incorporating fine- and coarse-grained disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results showed that CheXFound outperformed state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibited superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on downstream tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation, mortality prediction, malpositioned tube detection, and anatomical structure segmentation. The above results demonstrate CheXFound's strong generalization capabilities, which will enable diverse downstream adaptations with improved label efficiency in future applications. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.
Page 236 of 3903899 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.