Sort by:
Page 230 of 2332330 results

Enhancing Breast Cancer Detection Through Optimized Thermal Image Analysis Using PRMS-Net Deep Learning Approach.

Khan M, Su'ud MM, Alam MM, Karimullah S, Shaik F, Subhan F

pubmed logopapersMay 6 2025
Breast cancer has remained one of the most frequent and life-threatening cancers in females globally, putting emphasis on better diagnostics in its early stages to solve the problem of therapy effectiveness and survival. This work enhances the assessment of breast cancer by employing progressive residual networks (PRN) and ResNet-50 within the framework of Progressive Residual Multi-Class Support Vector Machine-Net. Built on concepts of deep learning, this creative integration optimizes feature extraction and raises the bar for classification effectiveness, earning an almost perfect 99.63% on our tests. These findings indicate that PRMS-Net can serve as an efficient and reliable diagnostic tool for early breast cancer detection, aiding radiologists in improving diagnostic accuracy and reducing false positives. The separation of the data into different segments is possible to determine the architecture's reliability using the fivefold cross-validation approach. The total variability of precision, recall, and F1 scores clearly depicted in the box plot also endorse the competency of the model for marking proper sensitivity and specificity-highly required for combating false positive and false negative cases in real clinical practice. The evaluation of error distribution strengthens the model's rationale by giving validation of practical application in medical contexts of image processing. The high levels of feature extraction sensitivity together with highly sophisticated classification methods make PRMS-Net a powerful tool that can be used in improving the early detection of breast cancer and subsequent patient prognosis.

Stacking classifiers based on integrated machine learning model: fusion of CT radiomics and clinical biomarkers to predict lymph node metastasis in locally advanced gastric cancer patients after neoadjuvant chemotherapy.

Ling T, Zuo Z, Huang M, Ma J, Wu L

pubmed logopapersMay 6 2025
The early prediction of lymph node positivity (LN+) after neoadjuvant chemotherapy (NAC) is crucial for optimizing individualized treatment strategies. This study aimed to integrate radiomic features and clinical biomarkers through machine learning (ML) approaches to enhance prediction accuracy by focusing on patients with locally advanced gastric cancer (LAGC). We retrospectively enrolled 277 patients with LAGC and randomly divided them into training (n = 193) and validation (n = 84) sets at a 7:3 ratio. In total, 1,130 radiomics features were extracted from pre-treatment portal venous phase computed tomography scans. These features were linearly combined to develop a radiomics score (rad score) through feature engineering. Then, using the rad score and clinical biomarkers as input features, we applied simple statistical strategies (relying on a single ML model) and integrated statistical strategies (including classification model integration techniques, such as hard voting, soft voting, and stacking) to predict LN+ post-NAC. The diagnostic performance of the model was assessed using receiver operating characteristic curves with corresponding areas under the curve (AUC). Of all ML models, the stacking classifier, an integrated statistical strategy, exhibited the best performance, achieving an AUC of 0.859 for predicting LN+ in patients with LAGC. This predictive model was transformed into a publicly available online risk calculator. We developed a stacking classifier that integrates radiomics and clinical biomarkers to predict LN+ in patients with LAGC undergoing surgical resection, providing personalized treatment insights.

Machine learning algorithms integrating positron emission tomography/computed tomography features to predict pathological complete response after neoadjuvant chemoimmunotherapy in lung cancer.

Sheng Z, Ji S, Chen Y, Mi Z, Yu H, Zhang L, Wan S, Song N, Shen Z, Zhang P

pubmed logopapersMay 6 2025
Reliable methods for predicting pathological complete response (pCR) in non-small cell lung cancer (NSCLC) patients undergoing neoadjuvant chemoimmunotherapy are still under exploration. Although Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) features reflect tumour response, their utility in predicting pCR remains controversial. This retrospective analysis included NSCLC patients who received neoadjuvant chemoimmunotherapy followed by 18F-FDG PET/CT imaging at Shanghai Pulmonary Hospital from October 2019 to August 2024. Eligible patients were randomly divided into training and validation cohort at a 7:3 ratio. Relevant 18F-FDG PET/CT features were evaluated as individual predictors and incorporated into 5 machine learning (ML) models. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and Shapley additive explanation was applied for model interpretation. A total of 205 patients were included, with 91 (44.4%) achieving pCR. Post-treatment tumour maximum standardized uptake value (SUVmax) demonstrated the highest predictive performance among individual predictors, achieving an AUC of 0.72 (95% CI 0.65-0.79), while ΔT SUVmax achieved an AUC of 0.65 (95% CI 0.53-0.77). The Light Gradient Boosting Machine algorithm outperformed other models and individual predictors, achieving an average AUC of 0.87 (95% CI 0.78-0.97) in training cohort and 0.83 (95% CI 0.72-0.94) in validation cohort. Shapley additive explanation analysis identified post-treatment tumour SUVmax and post-treatment nodal volume as key contributors. This ML models offer a non-invasive and effective approach for predicting pCR after neoadjuvant chemoimmunotherapy in NSCLC.

Brain connectome gradient dysfunction in patients with end-stage renal disease and its association with clinical phenotype and cognitive deficits.

Li P, Li N, Ren L, Yang YP, Zhu XY, Yuan HJ, Luo ZY, Mu JY, Wang W, Zhang M

pubmed logopapersMay 6 2025
A cortical hierarchical architecture is vital for encoding and integrating sensorimotor-to-cognitive information. However, whether this gradient structure is disrupted in end-stage renal disease (ESRD) patients and how this disruption provides valuable information for potential clinical symptoms remain unknown. We prospectively enrolled 77 ESRD patients and 48 healthy controls. Using resting-state functional magnetic resonance imaging, we studied ESRD-related hierarchical alterations. The Neurosynth platform and machine-learning models with 10-fold cross-validation were applied. ESRD patients had abnormal gradient metrics in core regions of the default mode network, sensorimotor network, and frontoparietal network. These changes correlated with creatinine, depression, and cognitive functions. A logistic regression classifier achieved a maximum performance of 84.8% accuracy and 0.901 area under the ROC curve (AUC). Our results highlight hierarchical imbalances in ESRD patients that correlate with diverse cognitive deficits, which may be used as potential neuroimaging markers for clinical symptoms.

Molecular mechanisms explaining sex-specific functional connectivity changes in chronic insomnia disorder.

Yu L, Shen Z, Wei W, Dou Z, Luo Y, Hu D, Lin W, Zhao G, Hong X, Yu S

pubmed logopapersMay 6 2025
This study investigates the hypothesis that chronic insomnia disorder (CID) is characterized by sex-specific changes in resting-state functional connectivity (rsFC), with certain molecular mechanisms potentially influencing CID's pathophysiology by altering rsFC in relevant networks. Utilizing a resting-state functional magnetic resonance imaging (fMRI) dataset of 395 participants, including 199 CID patients and 196 healthy controls, we examined sex-specific rsFC effects, particularly in the default mode network (DMN) and five insomnia-genetically vulnerable regions of interest (ROIs). By integrating gene expression data from the Allen Human Brain Atlas, we identified genes linked to these sex-specific rsFC alterations and conducted enrichment analysis to uncover underlying molecular mechanisms. Additionally, we simulated the impact of sex differences in rsFC with different sex compositions in our dataset and employed machine learning classifiers to distinguish CID from healthy controls based on sex-specific rsFC data. We identified both shared and sex-specific rsFC changes in the DMN and the five genetically vulnerable ROIs, with gene expression variations associated with these sex-specific connectivity differences. Enrichment analysis highlighted genes involved in synaptic signaling, ion channels, and immune function as potential contributors to CID pathophysiology through their influence on connectivity. Furthermore, our findings demonstrate that different sex compositions significantly affect study outcomes and higher diagnostic performance in sex-specific rsFC data than combined sex. This study uncovered both shared and sex-specific connectivity alterations in CID, providing molecular insights into its pathophysiology and suggesting considering sex differences in future fMRI-based diagnostic and treatment strategies.

Diagnosis of Sarcopenia Using Convolutional Neural Network Models Based on Muscle Ultrasound Images: Prospective Multicenter Study.

Chen ZT, Li XL, Jin FS, Shi YL, Zhang L, Yin HH, Zhu YL, Tang XY, Lin XY, Lu BL, Wang Q, Sun LP, Zhu XX, Qiu L, Xu HX, Guo LH

pubmed logopapersMay 6 2025
Early detection is clinically crucial for the strategic handling of sarcopenia, yet the screening process, which includes assessments of muscle mass, strength, and function, remains complex and difficult to access. This study aims to develop a convolutional neural network model based on ultrasound images to simplify the diagnostic process and promote its accessibility. This study prospectively evaluated 357 participants (101 with sarcopenia and 256 without sarcopenia) for training, encompassing three types of data: muscle ultrasound images, clinical information, and laboratory information. Three monomodal models based on each data type were developed in the training cohort. The data type with the best diagnostic performance was selected to develop the bimodal and multimodal model by adding another one or two data types. Subsequently, the diagnostic performance of the above models was compared. The contribution ratios of different data types were further analyzed for the multimodal model. A sensitivity analysis was performed by excluding 86 cases with missing values and retaining 271 complete cases for robustness validation. By comprehensive comparison, we finally identified the optimal model (SARCO model) as the convenient solution. Moreover, the SARCO model underwent an external validation with 145 participants (68 with sarcopenia and 77 without sarcopenia) and a proof-of-concept validation with 82 participants (19 with sarcopenia and 63 without sarcopenia) from two other hospitals. The monomodal model based on ultrasound images achieved the highest area under the receiver operator characteristic curve (AUC) of 0.827 and F1-score of 0.738 among the three monomodal models. Sensitivity analysis on complete data further confirmed the superiority of the ultrasound images model (AUC: 0.851; F1-score: 0.698). The performance of the multimodal model demonstrated statistical differences compared to the best monomodal model (AUC: 0.845 vs 0.827; P=.02) as well as the two bimodal models based on ultrasound images+clinical information (AUC: 0.845 vs 0.826; P=.03) and ultrasound images+laboratory information (AUC: 0.845 vs 0.832, P=0.035). On the other hand, ultrasound images contributed the most evidence for diagnosing sarcopenia (0.787) and nonsarcopenia (0.823) in the multimodal models. Sensitivity analysis showed consistent performance trends, with ultrasound images remaining the dominant contributor (Shapley additive explanation values: 0.810 for sarcopenia and 0.795 for nonsarcopenia). After comprehensive clinical analysis, the monomodal model based on ultrasound images was identified as the SARCO model. Subsequently, the SARCO model achieved satisfactory prediction performance in the external validation and proof-of-concept validation, with AUCs of 0.801 and 0.757 and F1-scores of 0.727 and 0.666, respectively. All three types of data contributed to sarcopenia diagnosis, while ultrasound images played a dominant role in model decision-making. The SARCO model based on ultrasound images is potentially the most convenient solution for diagnosing sarcopenia. Chinese Clinical Trial Registry ChiCTR2300073651; https://www.chictr.org.cn/showproj.html?proj=199199.

Artificial intelligence applications for the diagnosis of pulmonary nodules.

Ost DE

pubmed logopapersMay 6 2025
This review evaluates the role of artificial intelligence (AI) in diagnosing solitary pulmonary nodules (SPNs), focusing on clinical applications and limitations in pulmonary medicine. It explores AI's utility in imaging and blood/tissue-based diagnostics, emphasizing practical challenges over technical details of deep learning methods. AI enhances computed tomography (CT)-based computer-aided diagnosis (CAD) through steps like nodule detection, false positive reduction, segmentation, and classification, leveraging convolutional neural networks and machine learning. Segmentation achieves Dice similarity coefficients of 0.70-0.92, while malignancy classification yields areas under the curve of 0.86-0.97. AI-driven blood tests, incorporating RNA sequencing and clinical data, report AUCs up to 0.907 for distinguishing benign from malignant nodules. However, most models lack prospective, multiinstitutional validation, risking overfitting and limited generalizability. The "black box" nature of AI, coupled with overlapping inputs (e.g., nodule size, smoking history) with physician assessments, complicates integration into clinical workflows and precludes standard Bayesian analysis. AI shows promise for SPN diagnosis but requires rigorous validation in diverse populations and better clinician training for effective use. Rather than replacing judgment, AI should serve as a second opinion, with its reported performance metrics understood as study-specific, not directly applicable at the bedside due to double-counting issues.

From manual clinical criteria to machine learning algorithms: Comparing outcome endpoints derived from diverse electronic health record data modalities.

Chappidi S, Belue MJ, Harmon SA, Jagasia S, Zhuge Y, Tasci E, Turkbey B, Singh J, Camphausen K, Krauze AV

pubmed logopapersMay 1 2025
Progression free survival (PFS) is a critical clinical outcome endpoint during cancer management and treatment evaluation. Yet, PFS is often missing from publicly available datasets due to the current subjective, expert, and time-intensive nature of generating PFS metrics. Given emerging research in multi-modal machine learning (ML), we explored the benefits and challenges associated with mining different electronic health record (EHR) data modalities and automating extraction of PFS metrics via ML algorithms. We analyzed EHR data from 92 pathology-proven GBM patients, obtaining 233 corticosteroid prescriptions, 2080 radiology reports, and 743 brain MRI scans. Three methods were developed to derive clinical PFS: 1) frequency analysis of corticosteroid prescriptions, 2) natural language processing (NLP) of reports, and 3) computer vision (CV) volumetric analysis of imaging. Outputs from these methods were compared to manually annotated clinical guideline PFS metrics. Employing data-driven methods, standalone progression rates were 63% (prescription), 78% (NLP), and 54% (CV), compared to the 99% progression rate from manually applied clinical guidelines using integrated data sources. The prescription method identified progression an average of 5.2 months later than the clinical standard, while the CV and NLP algorithms identified progression earlier by 2.6 and 6.9 months, respectively. While lesion growth is a clinical guideline progression indicator, only half of patients exhibited increasing contrast-enhancing tumor volumes during scan-based CV analysis. Our results indicate that data-driven algorithms can extract tumor progression outcomes from existing EHR data. However, ML methods are subject to varying availability bias, supporting contextual information, and pre-processing resource burdens that influence the extracted PFS endpoint distributions. Our scan-based CV results also suggest that the automation of clinical criteria may not align with human intuition. Our findings indicate a need for improved data source integration, validation, and revisiting of clinical criteria in parallel to multi-modal ML algorithm development.

Upper-lobe CT imaging features improve prediction of lung function decline in COPD.

Makimoto K, Virdee S, Koo M, Hogg JC, Bourbeau J, Tan WC, Kirby M

pubmed logopapersMay 1 2025
It is unknown whether prediction models for lung function decline using computed tomography (CT) imaging-derived features from the upper lobes improve performance compared with globally derived features in individuals at risk of and with COPD. Individuals at risk (current or former smokers) and those with COPD from the Canadian Cohort Obstructive Lung Disease (CanCOLD) retrospective study, were investigated. A total of 103 CT features were extracted globally and regionally, and were used with 12 clinical features (demographics, questionnaires and spirometry) to predict rapid lung function decline for individuals at risk and those with COPD. Machine-learning models were evaluated in a hold-out test set using the area under the receiver operating characteristic curve (AUC) with DeLong's test for comparison. A total of 780 participants were included (n=276 at risk; n=298 Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 COPD; n=206 GOLD 2+ COPD). For predicting rapid lung function decline in those at risk, the upper-lobe CT model obtained a significantly higher AUC (AUC=0.80) than the lower-lobe CT model (AUC=0.63) and global model (AUC=0.66; p<0.05). For predicting rapid lung function decline in COPD, there was no significant differences between the upper-lobe (AUC=0.63), lower-lobe (AUC=0.59) or global CT features model (AUC=059; p>0.05). CT features extracted from the upper lobes obtained significantly improved prediction performance compared with globally extracted features for rapid lung function decline in early/mild COPD.

Providing context: Extracting non-linear and dynamic temporal motifs from brain activity.

Geenjaar E, Kim D, Calhoun V

pubmed logopapersJan 1 2025
Approaches studying the dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) activity often focus on time-resolved functional connectivity (tr-FC). While many tr-FC approaches have been proposed, most are linear approaches, e.g. computing the linear correlation at a timestep or within a window. In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. This has the advantage of allowing our model to capture differences at multiple temporal scales. We find that by separating out temporal scales our model's window-specific embeddings, or as we refer to them, context embeddings, more accurately separate windows from schizophrenia patients and control subjects than baseline models and the standard tr-FC approach in a low-dimensional space. Moreover, we find that for individuals with schizophrenia, our model's context embedding space is significantly correlated with both age and symptom severity. Interestingly, patients appear to spend more time in three clusters, one closer to controls which shows increased visual-sensorimotor, cerebellar-subcortical, and reduced cerebellar-visual functional network connectivity (FNC), an intermediate station showing increased subcortical-sensorimotor FNC, and one that shows decreased visual-sensorimotor, decreased subcortical-sensorimotor, and increased visual-subcortical domains. We verify that our model captures features that are complementary to - but not the same as - standard tr-FC features. Our model can thus help broaden the neuroimaging toolset in analyzing fMRI dynamics and shows potential as an approach for finding psychiatric links that are more sensitive to individual and group characteristics.
Page 230 of 2332330 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.