Sort by:
Page 23 of 25243 results

Highly Undersampled MRI Reconstruction via a Single Posterior Sampling of Diffusion Models

Jin Liu, Qing Lin, Zhuang Xiong, Shanshan Shan, Chunyi Liu, Min Li, Feng Liu, G. Bruce Pike, Hongfu Sun, Yang Gao

arxiv logopreprintMay 13 2025
Incoherent k-space under-sampling and deep learning-based reconstruction methods have shown great success in accelerating MRI. However, the performance of most previous methods will degrade dramatically under high acceleration factors, e.g., 8$\times$ or higher. Recently, denoising diffusion models (DM) have demonstrated promising results in solving this issue; however, one major drawback of the DM methods is the long inference time due to a dramatic number of iterative reverse posterior sampling steps. In this work, a Single Step Diffusion Model-based reconstruction framework, namely SSDM-MRI, is proposed for restoring MRI images from highly undersampled k-space. The proposed method achieves one-step reconstruction by first training a conditional DM and then iteratively distilling this model. Comprehensive experiments were conducted on both publicly available fastMRI images and an in-house multi-echo GRE (QSM) subject. Overall, the results showed that SSDM-MRI outperformed other methods in terms of numerical metrics (PSNR and SSIM), qualitative error maps, image fine details, and latent susceptibility information hidden in MRI phase images. In addition, the reconstruction time for a 320*320 brain slice of SSDM-MRI is only 0.45 second, which is only comparable to that of a simple U-net, making it a highly effective solution for MRI reconstruction tasks.

Effect of Deep Learning-Based Image Reconstruction on Lesion Conspicuity of Liver Metastases in Pre- and Post-contrast Enhanced Computed Tomography.

Ichikawa Y, Hasegawa D, Domae K, Nagata M, Sakuma H

pubmed logopapersMay 12 2025
The purpose of this study was to investigate the utility of deep learning image reconstruction at medium and high intensity levels (DLIR-M and DLIR-H, respectively) for better delineation of liver metastases in pre-contrast and post-contrast CT, compared to conventional hybrid iterative reconstruction (IR) methods. Forty-one patients with liver metastases who underwent abdominal CT were studied. The raw data were reconstructed with three different algorithms: hybrid IR (ASiR-V 50%), DLIR-M (TrueFildelity-M), and DLIR-H (TrueFildelity-H). Three experienced radiologists independently rated the lesion conspicuity of liver metastases on a qualitative 5-point scale (score 1 = very poor; score 5 = excellent). The observers also selected each image series for pre- and post-contrast CT per patient that was considered most preferable for liver metastases assessment. For pre-contrast CT, lesion conspicuity scores for DLIR-H and DLIR-M were significantly higher than those for hybrid IR for two of the three observers, while there was no significant difference for one observer. For post-contrast CT, the lesion conspicuity scores for DLIR-H images were significantly higher than those for DLIR-M images for two of the three observers on post-contrast CT (Observer 1: DLIR-H, 4.3 ± 0.8 vs. DLIR-M, 3.9 ± 0.9, p = 0.0006; Observer 3: DLIR-H, 4.6 ± 0.6 vs. DLIR-M, 4.3 ± 0.6, p = 0.0013). For post-contrast CT, all observers most often selected DLIR-H as the best reconstruction method for the diagnosis of liver metastases. However, in the pre-contrast CT, there was variation among the three observers in determining the most preferred image reconstruction method, and DLIR was not necessarily preferred over hybrid IR for the diagnosis of liver metastases.

Accelerating prostate rs-EPI DWI with deep learning: Halving scan time, enhancing image quality, and validating in vivo.

Zhang P, Feng Z, Chen S, Zhu J, Fan C, Xia L, Min X

pubmed logopapersMay 12 2025
This study aims to evaluate the feasibility and effectiveness of deep learning-based super-resolution techniques to reduce scan time while preserving image quality in high-resolution prostate diffusion-weighted imaging (DWI) with readout-segmented echo-planar imaging (rs-EPI). We retrospectively and prospectively analyzed prostate rs-EPI DWI data, employing deep learning super-resolution models, particularly the Multi-Scale Self-Similarity Network (MSSNet), to reconstruct low-resolution images into high-resolution images. Performance metrics such as structural similarity index (SSIM), Peak signal-to-noise ratio (PSNR), and normalized root mean squared error (NRMSE) were used to compare reconstructed images against the high-resolution ground truth (HR<sub>GT</sub>). Additionally, we evaluated the apparent diffusion coefficient (ADC) values and signal-to-noise ratio (SNR) across different models. The MSSNet model demonstrated superior performance in image reconstruction, achieving maximum SSIM values of 0.9798, and significant improvements in PSNR and NRMSE compared to other models. The deep learning approach reduced the rs-EPI DWI scan time by 54.4 % while maintaining image quality comparable to HR<sub>GT</sub>. Pearson correlation analysis revealed a strong correlation between ADC values from deep learning-reconstructed images and the ground truth, with differences remaining within 5 %. Furthermore, all models showed significant SNR enhancement, with MSSNet performing best across most cases. Deep learning-based super-resolution techniques, particularly MSSNet, effectively reduce scan time and enhance image quality in prostate rs-EPI DWI, making them promising tools for clinical applications.

Learning-based multi-material CBCT image reconstruction with ultra-slow kV switching.

Ma C, Zhu J, Zhang X, Cui H, Tan Y, Guo J, Zheng H, Liang D, Su T, Sun Y, Ge Y

pubmed logopapersMay 11 2025
ObjectiveThe purpose of this study is to perform multiple (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≥</mo><mn>3</mn></math>) material decomposition with deep learning method for spectral cone-beam CT (CBCT) imaging based on ultra-slow kV switching.ApproachIn this work, a novel deep neural network called SkV-Net is developed to reconstruct multiple material density images from the ultra-sparse spectral CBCT projections acquired using the ultra-slow kV switching technique. In particular, the SkV-Net has a backbone structure of U-Net, and a multi-head axial attention module is adopted to enlarge the perceptual field. It takes the CT images reconstructed from each kV as input, and output the basis material images automatically based on their energy-dependent attenuation characteristics. Numerical simulations and experimental studies are carried out to evaluate the performance of this new approach.Main ResultsIt is demonstrated that the SkV-Net is able to generate four different material density images, i.e., fat, muscle, bone and iodine, from five spans of kV switched spectral projections. Physical experiments show that the decomposition errors of iodine and CaCl<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow></mrow><mn>2</mn></msub></math> are less than 6<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>%</mi></math>, indicating high precision of this novel approach in distinguishing materials.SignificanceSkV-Net provides a promising multi-material decomposition approach for spectral CBCT imaging systems implemented with the ultra-slow kV switching scheme.

UltrasOM: A mamba-based network for 3D freehand ultrasound reconstruction using optical flow.

Sun R, Liu C, Wang W, Song Y, Sun T

pubmed logopapersMay 10 2025
Three-dimensional (3D) ultrasound (US) reconstruction is of significant value in clinical diagnosis, characterized by its safety, portability, low cost, and high real-time capabilities. 3D freehand ultrasound reconstruction aims to eliminate the need for tracking devices, relying solely on image data to infer the spatial relationships between frames. However, inherent jitter during handheld scanning introduces significant inaccuracies, making current methods ineffective in precisely predicting the spatial motions of ultrasound image frames. This leads to substantial cumulative errors over long sequence modeling, resulting in deformations or artifacts in the reconstructed volume. To address these challenges, we proposed UltrasOM, a 3D ultrasound reconstruction network designed for spatial relative motion estimation. Initially, we designed a video embedding module that integrates optical flow dynamics with original static information to enhance motion change features between frames. Next, we developed a Mamba-based spatiotemporal attention module, utilizing multi-layer stacked Space-Time Blocks to effectively capture global spatiotemporal correlations within video frame sequences. Finally, we incorporated correlation loss and motion speed loss to prevent overfitting related to scanning speed and pose, enhancing the model's generalization capability. Experimental results on a dataset of 200 forearm cases, comprising 58,011 frames, demonstrated that the proposed method achieved a final drift rate (FDR) of 10.24 %, a frame-to-frame distance error (DE) of 7.34 mm, a symmetric Hausdorff distance error (HD) of 10.81 mm, and a mean angular error (MEA) of 2.05°, outperforming state-of-the-art methods by 13.24 %, 15.11 %, 3.57 %, and 6.32 %, respectively. By integrating optical flow features and deeply exploring contextual spatiotemporal dependencies, the proposed network can directly predict the relative motions between multiple frames of ultrasound images without the need for tracking, surpassing the accuracy of existing methods.

Application of artificial intelligence-based three dimensional digital reconstruction technology in precision treatment of complex total hip arthroplasty.

Zheng Q, She H, Zhang Y, Zhao P, Liu X, Xiang B

pubmed logopapersMay 10 2025
To evaluate the predictive ability of AI HIP in determining the size and position of prostheses during complex total hip arthroplasty (THA). Additionally, it investigates the factors influencing the accuracy of preoperative planning predictions. From April 2021 to December 2023, patients with complex hip joint diseases were divided into the AI preoperative planning group (n = 29) and the X-ray preoperative planning group (n = 27). Postoperative X-rays were used to measure acetabular anteversion angle, abduction angle, tip-to-sternum distance, intraoperative duration, blood loss, planning time, postoperative Harris Hip Scores (at 2 weeks, 3 months, and 6 months), and visual analogue scale (VAS) pain scores (at 2 weeks and at final follow-up) to analyze clinical outcomes. On the acetabular side, the accuracy of AI preoperative planning was higher compared to X-ray preoperative planning (75.9% vs. 44.4%, P = 0.016). On the femoral side, AI preoperative planning also showed higher accuracy compared to X-ray preoperative planning (85.2% vs. 59.3%, P = 0.033). The AI preoperative planning group showed superior outcomes in terms of reducing bilateral leg length discrepancy (LLD), decreasing operative time and intraoperative blood loss, early postoperative recovery, and pain control compared to the X-ray preoperative planning group (P < 0.05). No significant differences were observed between the groups regarding bilateral femoral offset (FO) differences, bilateral combined offset (CO) differences, abduction angle, anteversion angle, or tip-to-sternum distance. Factors such as gender, age, affected side, comorbidities, body mass index (BMI) classification, bone mineral density did not affect the prediction accuracy of AI HIP preoperative planning. Artificial intelligence-based 3D planning can be effectively utilized for preoperative planning in complex THA. Compared to X-ray templating, AI demonstrates superior accuracy in prosthesis measurement and provides significant clinical benefits, particularly in early postoperative recovery.

Deep compressed multichannel adaptive optics scanning light ophthalmoscope.

Park J, Hagan K, DuBose TB, Maldonado RS, McNabb RP, Dubra A, Izatt JA, Farsiu S

pubmed logopapersMay 9 2025
Adaptive optics scanning light ophthalmoscopy (AOSLO) reveals individual retinal cells and their function, microvasculature, and micropathologies in vivo. As compared to the single-channel offset pinhole and two-channel split-detector nonconfocal AOSLO designs, by providing multidirectional imaging capabilities, a recent generation of multidetector and (multi-)offset aperture AOSLO modalities has been demonstrated to provide critical information about retinal microstructures. However, increasing detection channels requires expensive optical components and/or critically increases imaging time. To address this issue, we present an innovative combination of machine learning and optics as an integrated technology to compressively capture 12 nonconfocal channel AOSLO images simultaneously. Imaging of healthy participants and diseased subjects using the proposed deep compressed multichannel AOSLO showed enhanced visualization of rods, cones, and mural cells with over an order-of-magnitude improvement in imaging speed as compared to conventional offset aperture imaging. To facilitate the adaptation and integration with other in vivo microscopy systems, we made optical design, acquisition, and computational reconstruction codes open source.

Towards order of magnitude X-ray dose reduction in breast cancer imaging using phase contrast and deep denoising

Ashkan Pakzad, Robert Turnbull, Simon J. Mutch, Thomas A. Leatham, Darren Lockie, Jane Fox, Beena Kumar, Daniel Häsermann, Christopher J. Hall, Anton Maksimenko, Benedicta D. Arhatari, Yakov I. Nesterets, Amir Entezam, Seyedamir T. Taba, Patrick C. Brennan, Timur E. Gureyev, Harry M. Quiney

arxiv logopreprintMay 9 2025
Breast cancer is the most frequently diagnosed human cancer in the United States at present. Early detection is crucial for its successful treatment. X-ray mammography and digital breast tomosynthesis are currently the main methods for breast cancer screening. However, both have known limitations in terms of their sensitivity and specificity to breast cancers, while also frequently causing patient discomfort due to the requirement for breast compression. Breast computed tomography is a promising alternative, however, to obtain high-quality images, the X-ray dose needs to be sufficiently high. As the breast is highly radiosensitive, dose reduction is particularly important. Phase-contrast computed tomography (PCT) has been shown to produce higher-quality images at lower doses and has no need for breast compression. It is demonstrated in the present study that, when imaging full fresh mastectomy samples with PCT, deep learning-based image denoising can further reduce the radiation dose by a factor of 16 or more, without any loss of image quality. The image quality has been assessed both in terms of objective metrics, such as spatial resolution and contrast-to-noise ratio, as well as in an observer study by experienced medical imaging specialists and radiologists. This work was carried out in preparation for live patient PCT breast cancer imaging, initially at specialized synchrotron facilities.

Hybrid Learning: A Novel Combination of Self-Supervised and Supervised Learning for MRI Reconstruction without High-Quality Training Reference

Haoyang Pei, Ding Xia, Xiang Xu, William Moore, Yao Wang, Hersh Chandarana, Li Feng

arxiv logopreprintMay 9 2025
Purpose: Deep learning has demonstrated strong potential for MRI reconstruction, but conventional supervised learning methods require high-quality reference images, which are often unavailable in practice. Self-supervised learning offers an alternative, yet its performance degrades at high acceleration rates. To overcome these limitations, we propose hybrid learning, a novel two-stage training framework that combines self-supervised and supervised learning for robust image reconstruction. Methods: Hybrid learning is implemented in two sequential stages. In the first stage, self-supervised learning is employed to generate improved images from noisy or undersampled reference data. These enhanced images then serve as pseudo-ground truths for the second stage, which uses supervised learning to refine reconstruction performance and support higher acceleration rates. We evaluated hybrid learning in two representative applications: (1) accelerated 0.55T spiral-UTE lung MRI using noisy reference data, and (2) 3D T1 mapping of the brain without access to fully sampled ground truth. Results: For spiral-UTE lung MRI, hybrid learning consistently improved image quality over both self-supervised and conventional supervised methods across different acceleration rates, as measured by SSIM and NMSE. For 3D T1 mapping, hybrid learning achieved superior T1 quantification accuracy across a wide dynamic range, outperforming self-supervised learning in all tested conditions. Conclusions: Hybrid learning provides a practical and effective solution for training deep MRI reconstruction networks when only low-quality or incomplete reference data are available. It enables improved image quality and accurate quantitative mapping across different applications and field strengths, representing a promising technique toward broader clinical deployment of deep learning-based MRI.

Impact of tracer uptake rate on quantification accuracy of myocardial blood flow in PET: A simulation study.

Hong X, Sanaat A, Salimi Y, Nkoulou R, Arabi H, Lu L, Zaidi H

pubmed logopapersMay 8 2025
Cardiac perfusion PET is commonly used to assess ischemia and cardiovascular risk, which enables quantitative measurements of myocardial blood flow (MBF) through kinetic modeling. However, the estimation of kinetic parameters is challenging due to the noisy nature of short dynamic frames and limited sample data points. This work aimed to investigate the errors in MBF estimation in PET through a simulation study and to evaluate different parameter estimation approaches, including a deep learning (DL) method. Simulated studies were generated using digital phantoms based on cardiac segmentations from 55 clinical CT images. We employed the irreversible 2-tissue compartmental model and simulated dynamic <sup>13</sup>N-ammonia PET scans under both rest and stress conditions (220 cases each). The simulations covered a rest K<sub>1</sub> range of 0.6 to 1.2 and a stress K<sub>1</sub> range of 1.2 to 3.6 (unit: mL/min/g) in the myocardium. A transformer-based DL model was trained on the simulated dataset to predict parametric images (PIMs) from noisy PET image frames and was validated using 5-fold cross-validation. We compared the DL method with the voxel-wise nonlinear least squares (NLS) fitting applied to the dynamic images, using either Gaussian filter (GF) smoothing (GF-NLS) or a dynamic nonlocal means (DNLM) algorithm for denoising (DNLM-NLS). Two patients with coronary CT angiography (CTA) and fractional flow reserve (FFR) were enrolled to test the feasibility of applying DL models on clinical PET data. The DL method showed clearer image structures with reduced noise compared to the traditional NLS-based methods. In terms of mean absolute relative error (MARE), as the rest K<sub>1</sub> values increased from 0.6 to 1.2 mL/min/g, the overall bias in myocardium K<sub>1</sub> estimates decreased from approximately 58% to 45% for the NLS-based methods while the DL method showed a reduction in MARE from 42% to 18%. For stress data, as the stress K<sub>1</sub> decreased from 3.6 to 1.2 mL/min/g, the MARE increased from 30% to 70% for the GF-NLS method. In contrast, both the DNLM-NLS (average: 42%) and the DL methods (average: 20%) demonstrated significantly smaller MARE changes as stress K<sub>1</sub> varied. Regarding the regional mean bias (±standard deviation), the GF-NLS method had a bias of 6.30% (±8.35%) of rest K<sub>1</sub>, compared to 1.10% (±8.21%) for DNLM-NLS and 6.28% (±14.05%) for the DL method. For the stress K<sub>1</sub>, the GF-NLS showed a mean bias of 10.72% (±9.34%) compared to 1.69% (±8.82%) for DNLM-NLS and -10.55% (±9.81%) for the DL method. This study showed that an increase in the tracer uptake rate (K<sub>1</sub>) corresponded to improved accuracy and precision in MBF quantification, whereas lower tracer uptake resulted in higher noise in dynamic PET and poorer parameter estimates. Utilizing denoising techniques or DL approaches can mitigate noise-induced bias in PET parametric imaging.
Page 23 of 25243 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.