Sort by:
Page 23 of 36354 results

CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain

Maik Dannecker, Vasiliki Sideri-Lampretsa, Sophie Starck, Angeline Mihailov, Mathieu Milh, Nadine Girard, Guillaume Auzias, Daniel Rueckert

arxiv logopreprintJun 11 2025
Magnetic resonance imaging of fetal and neonatal brains reveals rapid neurodevelopment marked by substantial anatomical changes unfolding within days. Studying this critical stage of the developing human brain, therefore, requires accurate brain models-referred to as atlases-of high spatial and temporal resolution. To meet these demands, established traditional atlases and recently proposed deep learning-based methods rely on large and comprehensive datasets. This poses a major challenge for studying brains in the presence of pathologies for which data remains scarce. We address this limitation with CINeMA (Conditional Implicit Neural Multi-Modal Atlas), a novel framework for creating high-resolution, spatio-temporal, multimodal brain atlases, suitable for low-data settings. Unlike established methods, CINeMA operates in latent space, avoiding compute-intensive image registration and reducing atlas construction times from days to minutes. Furthermore, it enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC). CINeMA supports downstream tasks such as tissue segmentation and age prediction whereas its generative properties enable synthetic data creation and anatomically informed data augmentation. Surpassing state-of-the-art methods in accuracy, efficiency, and versatility, CINeMA represents a powerful tool for advancing brain research. We release the code and atlases at https://github.com/m-dannecker/CINeMA.

Evaluation of artificial-intelligence-based liver segmentation and its application for longitudinal liver volume measurement.

Kimura R, Hirata K, Tsuneta S, Takenaka J, Watanabe S, Abo D, Kudo K

pubmed logopapersJun 10 2025
Accurate liver-volume measurements from CT scans are essential for treatment planning, particularly in liver resection cases, to avoid postoperative liver failure. However, manual segmentation is time-consuming and prone to variability. Advancements in artificial intelligence (AI), specifically convolutional neural networks, have enhanced liver segmentation accuracy. We aimed to identify optimal CT phases for AI-based liver volume estimation and apply the model to track liver volume changes over time. We also evaluated temporal changes in liver volume in participants without liver disease. In this retrospective, single-center study, we assessed the performance of an open-source AI-based liver segmentation model previously reported, using non-contrast and dynamic CT phases. The accuracy of the model was compared with that of expert radiologists. The Dice similarity coefficient (DSC) was calculated across various CT phases, including arterial, portal venous, and non-contrast, to validate the model. The model was then applied to a longitudinal study involving 39 patients without liver disease (527 CT scans) to examine age-related liver volume changes over 5 to 20 years. The model demonstrated high accuracy across all phases compared to manual segmentation. Among the CT phases, the highest DSC of 0.988 ± 0.010 was in the arterial phase. The intraclass correlation coefficients for liver volume were also high, exceeding 0.9 for contrast-enhanced phases and 0.8 for non-contrast CT. In the longitudinal study, the model indicated an annual decrease of 0.95%. This model provides high accuracy in liver segmentation across various CT phases and offers insights into age-related liver volume reduction. Measuring changes in liver volume may help with the early detection of diseases and the understanding of pathophysiology.

Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis

Jingguo Qu, Xinyang Han, Tonghuan Xiao, Jia Ai, Juan Wu, Tong Zhao, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Ying

arxiv logopreprintJun 10 2025
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at https://github.com/jinggqu/NextGen-UIA.

PatchGuard: Adversarially Robust Anomaly Detection and Localization through Vision Transformers and Pseudo Anomalies

Mojtaba Nafez, Amirhossein Koochakian, Arad Maleki, Jafar Habibi, Mohammad Hossein Rohban

arxiv logopreprintJun 10 2025
Anomaly Detection (AD) and Anomaly Localization (AL) are crucial in fields that demand high reliability, such as medical imaging and industrial monitoring. However, current AD and AL approaches are often susceptible to adversarial attacks due to limitations in training data, which typically include only normal, unlabeled samples. This study introduces PatchGuard, an adversarially robust AD and AL method that incorporates pseudo anomalies with localization masks within a Vision Transformer (ViT)-based architecture to address these vulnerabilities. We begin by examining the essential properties of pseudo anomalies, and follow it by providing theoretical insights into the attention mechanisms required to enhance the adversarial robustness of AD and AL systems. We then present our approach, which leverages Foreground-Aware Pseudo-Anomalies to overcome the deficiencies of previous anomaly-aware methods. Our method incorporates these crafted pseudo-anomaly samples into a ViT-based framework, with adversarial training guided by a novel loss function designed to improve model robustness, as supported by our theoretical analysis. Experimental results on well-established industrial and medical datasets demonstrate that PatchGuard significantly outperforms previous methods in adversarial settings, achieving performance gains of $53.2\%$ in AD and $68.5\%$ in AL, while also maintaining competitive accuracy in non-adversarial settings. The code repository is available at https://github.com/rohban-lab/PatchGuard .

Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis

Jingguo Qu, Xinyang Han, Tonghuan Xiao, Jia Ai, Juan Wu, Tong Zhao, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Yingınst

arxiv logopreprintJun 10 2025
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at \href{https://github.com/jinggqu/NextGen-UIA}{GitHub}.

DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging

Felix Wagner, Pramit Saha, Harry Anthony, J. Alison Noble, Konstantinos Kamnitsas

arxiv logopreprintJun 10 2025
Safe deployment of machine learning (ML) models in safety-critical domains such as medical imaging requires detecting inputs with characteristics not seen during training, known as out-of-distribution (OOD) detection, to prevent unreliable predictions. Effective OOD detection after deployment could benefit from access to the training data, enabling direct comparison between test samples and the training data distribution to identify differences. State-of-the-art OOD detection methods, however, either discard training data after deployment or assume that test samples and training data are centrally stored together, an assumption that rarely holds in real-world settings. This is because shipping training data with the deployed model is usually impossible due to the size of training databases, as well as proprietary or privacy constraints. We introduce the Isolation Network, an OOD detection framework that quantifies the difficulty of separating a target test sample from the training data by solving a binary classification task. We then propose Decentralized Isolation Networks (DIsoN), which enables the comparison of training and test data when data-sharing is impossible, by exchanging only model parameters between the remote computational nodes of training and deployment. We further extend DIsoN with class-conditioning, comparing a target sample solely with training data of its predicted class. We evaluate DIsoN on four medical imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology) across 12 OOD detection tasks. DIsoN performs favorably against existing methods while respecting data-privacy. This decentralized OOD detection framework opens the way for a new type of service that ML developers could provide along with their models: providing remote, secure utilization of their training data for OOD detection services. Code will be available upon acceptance at: *****

SSS: Semi-Supervised SAM-2 with Efficient Prompting for Medical Imaging Segmentation

Hongjie Zhu, Xiwei Liu, Rundong Xue, Zeyu Zhang, Yong Xu, Daji Ergu, Ying Cai, Yang Zhao

arxiv logopreprintJun 10 2025
In the era of information explosion, efficiently leveraging large-scale unlabeled data while minimizing the reliance on high-quality pixel-level annotations remains a critical challenge in the field of medical imaging. Semi-supervised learning (SSL) enhances the utilization of unlabeled data by facilitating knowledge transfer, significantly improving the performance of fully supervised models and emerging as a highly promising research direction in medical image analysis. Inspired by the ability of Vision Foundation Models (e.g., SAM-2) to provide rich prior knowledge, we propose SSS (Semi-Supervised SAM-2), a novel approach that leverages SAM-2's robust feature extraction capabilities to uncover latent knowledge in unlabeled medical images, thus effectively enhancing feature support for fully supervised medical image segmentation. Specifically, building upon the single-stream "weak-to-strong" consistency regularization framework, this paper introduces a Discriminative Feature Enhancement (DFE) mechanism to further explore the feature discrepancies introduced by various data augmentation strategies across multiple views. By leveraging feature similarity and dissimilarity across multi-scale augmentation techniques, the method reconstructs and models the features, thereby effectively optimizing the salient regions. Furthermore, a prompt generator is developed that integrates Physical Constraints with a Sliding Window (PCSW) mechanism to generate input prompts for unlabeled data, fulfilling SAM-2's requirement for additional prompts. Extensive experiments demonstrate the superiority of the proposed method for semi-supervised medical image segmentation on two multi-label datasets, i.e., ACDC and BHSD. Notably, SSS achieves an average Dice score of 53.15 on BHSD, surpassing the previous state-of-the-art method by +3.65 Dice. Code will be available at https://github.com/AIGeeksGroup/SSS.

HAIBU-ReMUD: Reasoning Multimodal Ultrasound Dataset and Model Bridging to General Specific Domains

Shijie Wang, Yilun Zhang, Zeyu Lai, Dexing Kong

arxiv logopreprintJun 9 2025
Multimodal large language models (MLLMs) have shown great potential in general domains but perform poorly in some specific domains due to a lack of domain-specific data, such as image-text data or vedio-text data. In some specific domains, there is abundant graphic and textual data scattered around, but lacks standardized arrangement. In the field of medical ultrasound, there are ultrasonic diagnostic books, ultrasonic clinical guidelines, ultrasonic diagnostic reports, and so on. However, these ultrasonic materials are often saved in the forms of PDF, images, etc., and cannot be directly used for the training of MLLMs. This paper proposes a novel image-text reasoning supervised fine-tuning data generation pipeline to create specific domain quadruplets (image, question, thinking trace, and answer) from domain-specific materials. A medical ultrasound domain dataset ReMUD is established, containing over 45,000 reasoning and non-reasoning supervised fine-tuning Question Answering (QA) and Visual Question Answering (VQA) data. The ReMUD-7B model, fine-tuned on Qwen2.5-VL-7B-Instruct, outperforms general-domain MLLMs in medical ultrasound field. To facilitate research, the ReMUD dataset, data generation codebase, and ReMUD-7B parameters will be released at https://github.com/ShiDaizi/ReMUD, addressing the data shortage issue in specific domain MLLMs.

Snap-and-tune: combining deep learning and test-time optimization for high-fidelity cardiovascular volumetric meshing

Daniel H. Pak, Shubh Thaker, Kyle Baylous, Xiaoran Zhang, Danny Bluestein, James S. Duncan

arxiv logopreprintJun 9 2025
High-quality volumetric meshing from medical images is a key bottleneck for physics-based simulations in personalized medicine. For volumetric meshing of complex medical structures, recent studies have often utilized deep learning (DL)-based template deformation approaches to enable fast test-time generation with high spatial accuracy. However, these approaches still exhibit limitations, such as limited flexibility at high-curvature areas and unrealistic inter-part distances. In this study, we introduce a simple yet effective snap-and-tune strategy that sequentially applies DL and test-time optimization, which combines fast initial shape fitting with more detailed sample-specific mesh corrections. Our method provides significant improvements in both spatial accuracy and mesh quality, while being fully automated and requiring no additional training labels. Finally, we demonstrate the versatility and usefulness of our newly generated meshes via solid mechanics simulations in two different software platforms. Our code is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-Mesh.

Addressing Limited Generalizability in Artificial Intelligence-Based Brain Aneurysm Detection for Computed Tomography Angiography: Development of an Externally Validated Artificial Intelligence Screening Platform.

Pettersson SD, Filo J, Liaw P, Skrzypkowska P, Klepinowski T, Szmuda T, Fodor TB, Ramirez-Velandia F, Zieliński P, Chang YM, Taussky P, Ogilvy CS

pubmed logopapersJun 9 2025
Brain aneurysm detection models, both in the literature and in industry, continue to lack generalizability during external validation, limiting clinical adoption. This challenge is largely due to extensive exclusion criteria during training data selection. The authors developed the first model to achieve generalizability using novel methodological approaches. Computed tomography angiography (CTA) scans from 2004 to 2023 at the study institution were used for model training, including untreated unruptured intracranial aneurysms without extensive cerebrovascular disease. External validation used digital subtraction angiography-verified CTAs from an international center, while prospective validation occurred at the internal institution over 9 months. A public web platform was created for further model validation. A total of 2194 CTA scans were used for this study. One thousand five hundred eighty-seven patients and 1920 aneurysms with a mean size of 5.3 ± 3.7 mm were included in the training cohort. The mean age of the patients was 69.7 ± 14.9 years, and 1203 (75.8%) were female. The model achieved a training Dice score of 0.88 and a validation Dice score of 0.76. Prospective internal validation on 304 scans yielded a lesion-level (LL) sensitivity of 82.5% (95% CI: 75.5-87.9) and specificity of 89.6 (95% CI: 84.5-93.2). External validation on 303 scans demonstrated an on-par LL sensitivity and specificity of 83.5% (95% CI: 75.1-89.4) and 92.9% (95% CI: 88.8-95.6), respectively. Radiologist LL sensitivity from the external center was 84.5% (95% CI: 76.2-90.2), and 87.5% of the missed aneurysms were detected by the model. The authors developed the first publicly testable artificial intelligence model for aneurysm detection on CTA scans, demonstrating generalizability and state-of-the-art performance in external validation. The model addresses key limitations of previous efforts and enables broader validation through a web-based platform.
Page 23 of 36354 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.