Sort by:
Page 23 of 59587 results

Augmenting Continual Learning of Diseases with LLM-Generated Visual Concepts

Jiantao Tan, Peixian Ma, Kanghao Chen, Zhiming Dai, Ruixuan Wang

arxiv logopreprintAug 5 2025
Continual learning is essential for medical image classification systems to adapt to dynamically evolving clinical environments. The integration of multimodal information can significantly enhance continual learning of image classes. However, while existing approaches do utilize textual modality information, they solely rely on simplistic templates with a class name, thereby neglecting richer semantic information. To address these limitations, we propose a novel framework that harnesses visual concepts generated by large language models (LLMs) as discriminative semantic guidance. Our method dynamically constructs a visual concept pool with a similarity-based filtering mechanism to prevent redundancy. Then, to integrate the concepts into the continual learning process, we employ a cross-modal image-concept attention module, coupled with an attention loss. Through attention, the module can leverage the semantic knowledge from relevant visual concepts and produce class-representative fused features for classification. Experiments on medical and natural image datasets show our method achieves state-of-the-art performance, demonstrating the effectiveness and superiority of our method. We will release the code publicly.

GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images

Yifei Sun, Zhanghao Chen, Hao Zheng, Yuqing Lu, Lixin Duan, Fenglei Fan, Ahmed Elazab, Xiang Wan, Changmiao Wang, Ruiquan Ge

arxiv logopreprintAug 5 2025
Chest X-Ray (CXR) imaging for pulmonary diagnosis raises significant challenges, primarily because bone structures can obscure critical details necessary for accurate diagnosis. Recent advances in deep learning, particularly with diffusion models, offer significant promise for effectively minimizing the visibility of bone structures in CXR images, thereby improving clarity and diagnostic accuracy. Nevertheless, existing diffusion-based methods for bone suppression in CXR imaging struggle to balance the complete suppression of bones with preserving local texture details. Additionally, their high computational demand and extended processing time hinder their practical use in clinical settings. To address these limitations, we introduce a Global-Local Latent Consistency Model (GL-LCM) architecture. This model combines lung segmentation, dual-path sampling, and global-local fusion, enabling fast high-resolution bone suppression in CXR images. To tackle potential boundary artifacts and detail blurring in local-path sampling, we further propose Local-Enhanced Guidance, which addresses these issues without additional training. Comprehensive experiments on a self-collected dataset SZCH-X-Rays, and the public dataset JSRT, reveal that our GL-LCM delivers superior bone suppression and remarkable computational efficiency, significantly outperforming several competitive methods. Our code is available at https://github.com/diaoquesang/GL-LCM.

MAUP: Training-free Multi-center Adaptive Uncertainty-aware Prompting for Cross-domain Few-shot Medical Image Segmentation

Yazhou Zhu, Haofeng Zhang

arxiv logopreprintAug 5 2025
Cross-domain Few-shot Medical Image Segmentation (CD-FSMIS) is a potential solution for segmenting medical images with limited annotation using knowledge from other domains. The significant performance of current CD-FSMIS models relies on the heavily training procedure over other source medical domains, which degrades the universality and ease of model deployment. With the development of large visual models of natural images, we propose a training-free CD-FSMIS model that introduces the Multi-center Adaptive Uncertainty-aware Prompting (MAUP) strategy for adapting the foundation model Segment Anything Model (SAM), which is trained with natural images, into the CD-FSMIS task. To be specific, MAUP consists of three key innovations: (1) K-means clustering based multi-center prompts generation for comprehensive spatial coverage, (2) uncertainty-aware prompts selection that focuses on the challenging regions, and (3) adaptive prompt optimization that can dynamically adjust according to the target region complexity. With the pre-trained DINOv2 feature encoder, MAUP achieves precise segmentation results across three medical datasets without any additional training compared with several conventional CD-FSMIS models and training-free FSMIS model. The source code is available at: https://github.com/YazhouZhu19/MAUP.

R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation

Futian Wang, Yuhan Qiao, Xiao Wang, Fuling Wang, Yuxiang Zhang, Dengdi Sun

arxiv logopreprintAug 5 2025
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.

MedCAL-Bench: A Comprehensive Benchmark on Cold-Start Active Learning with Foundation Models for Medical Image Analysis

Ning Zhu, Xiaochuan Ma, Shaoting Zhang, Guotai Wang

arxiv logopreprintAug 5 2025
Cold-Start Active Learning (CSAL) aims to select informative samples for annotation without prior knowledge, which is important for improving annotation efficiency and model performance under a limited annotation budget in medical image analysis. Most existing CSAL methods rely on Self-Supervised Learning (SSL) on the target dataset for feature extraction, which is inefficient and limited by insufficient feature representation. Recently, pre-trained Foundation Models (FMs) have shown powerful feature extraction ability with a potential for better CSAL. However, this paradigm has been rarely investigated, with a lack of benchmarks for comparison of FMs in CSAL tasks. To this end, we propose MedCAL-Bench, the first systematic FM-based CSAL benchmark for medical image analysis. We evaluate 14 FMs and 7 CSAL strategies across 7 datasets under different annotation budgets, covering classification and segmentation tasks from diverse medical modalities. It is also the first CSAL benchmark that evaluates both the feature extraction and sample selection stages. Our experimental results reveal that: 1) Most FMs are effective feature extractors for CSAL, with DINO family performing the best in segmentation; 2) The performance differences of these FMs are large in segmentation tasks, while small for classification; 3) Different sample selection strategies should be considered in CSAL on different datasets, with Active Learning by Processing Surprisal (ALPS) performing the best in segmentation while RepDiv leading for classification. The code is available at https://github.com/HiLab-git/MedCAL-Bench.

Joint Lossless Compression and Steganography for Medical Images via Large Language Models

Pengcheng Zheng, Xiaorong Pu, Kecheng Chen, Jiaxin Huang, Meng Yang, Bai Feng, Yazhou Ren, Jianan Jiang

arxiv logopreprintAug 3 2025
Recently, large language models (LLMs) have driven promis ing progress in lossless image compression. However, di rectly adopting existing paradigms for medical images suf fers from an unsatisfactory trade-off between compression performance and efficiency. Moreover, existing LLM-based compressors often overlook the security of the compres sion process, which is critical in modern medical scenarios. To this end, we propose a novel joint lossless compression and steganography framework. Inspired by bit plane slicing (BPS), we find it feasible to securely embed privacy messages into medical images in an invisible manner. Based on this in sight, an adaptive modalities decomposition strategy is first devised to partition the entire image into two segments, pro viding global and local modalities for subsequent dual-path lossless compression. During this dual-path stage, we inno vatively propose a segmented message steganography algo rithm within the local modality path to ensure the security of the compression process. Coupled with the proposed anatom ical priors-based low-rank adaptation (A-LoRA) fine-tuning strategy, extensive experimental results demonstrate the su periority of our proposed method in terms of compression ra tios, efficiency, and security. The source code will be made publicly available.

External evaluation of an open-source deep learning model for prostate cancer detection on bi-parametric MRI.

Johnson PM, Tong A, Ginocchio L, Del Hoyo JL, Smereka P, Harmon SA, Turkbey B, Chandarana H

pubmed logopapersAug 3 2025
This study aims to evaluate the diagnostic accuracy of an open-source deep learning (DL) model for detecting clinically significant prostate cancer (csPCa) in biparametric MRI (bpMRI). It also aims to outline the necessary components of the model that facilitate effective sharing and external evaluation of PCa detection models. This retrospective diagnostic accuracy study evaluated a publicly available DL model trained to detect PCa on bpMRI. External validation was performed on bpMRI exams from 151 biologically male patients (mean age, 65 ± 8 years). The model's performance was evaluated using patient-level classification of PCa with both radiologist interpretation and histopathology serving as the ground truth. The model processed bpMRI inputs to generate lesion probability maps. Performance was assessed using the area under the receiver operating characteristic curve (AUC) for PI-RADS ≥ 3, PI-RADS ≥ 4, and csPCa (defined as Gleason ≥ 7) at an exam level. The model achieved AUCs of 0.86 (95% CI: 0.80-0.92) and 0.91 (95% CI: 0.85-0.96) for predicting PI-RADS ≥ 3 and ≥ 4 exams, respectively, and 0.78 (95% CI: 0.71-0.86) for csPCa. Sensitivity and specificity for csPCa were 0.87 and 0.53, respectively. Fleiss' kappa for inter-reader agreement was 0.51. The open-source DL model offers high sensitivity to clinically significant prostate cancer. The study underscores the importance of sharing model code and weights to enable effective external validation and further research. Question Inter-reader variability hinders the consistent and accurate detection of clinically significant prostate cancer in MRI. Findings An open-source deep learning model demonstrated reproducible diagnostic accuracy, achieving AUCs of 0.86 for PI-RADS ≥ 3 and 0.78 for CsPCa lesions. Clinical relevance The model's high sensitivity for MRI-positive lesions (PI-RADS ≥ 3) may provide support for radiologists. Its open-source deployment facilitates further development and evaluation across diverse clinical settings, maximizing its potential utility.

M$^3$AD: Multi-task Multi-gate Mixture of Experts for Alzheimer's Disease Diagnosis with Conversion Pattern Modeling

Yufeng Jiang, Hexiao Ding, Hongzhao Chen, Jing Lan, Xinzhi Teng, Gerald W. Y. Cheng, Zongxi Li, Haoran Xie, Jung Sun Yoo, Jing Cai

arxiv logopreprintAug 3 2025
Alzheimer's disease (AD) progression follows a complex continuum from normal cognition (NC) through mild cognitive impairment (MCI) to dementia, yet most deep learning approaches oversimplify this into discrete classification tasks. This study introduces M$^3$AD, a novel multi-task multi-gate mixture of experts framework that jointly addresses diagnostic classification and cognitive transition modeling using structural MRI. We incorporate three key innovations: (1) an open-source T1-weighted sMRI preprocessing pipeline, (2) a unified learning framework capturing NC-MCI-AD transition patterns with demographic priors (age, gender, brain volume) for improved generalization, and (3) a customized multi-gate mixture of experts architecture enabling effective multi-task learning with structural MRI alone. The framework employs specialized expert networks for diagnosis-specific pathological patterns while shared experts model common structural features across the cognitive continuum. A two-stage training protocol combines SimMIM pretraining with multi-task fine-tuning for joint optimization. Comprehensive evaluation across six datasets comprising 12,037 T1-weighted sMRI scans demonstrates superior performance: 95.13% accuracy for three-class NC-MCI-AD classification and 99.15% for binary NC-AD classification, representing improvements of 4.69% and 0.55% over state-of-the-art approaches. The multi-task formulation simultaneously achieves 97.76% accuracy in predicting cognitive transition. Our framework outperforms existing methods using fewer modalities and offers a clinically practical solution for early intervention. Code: https://github.com/csyfjiang/M3AD.

LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI

Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian F. Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck

arxiv logopreprintAug 1 2025
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Mobile U-ViT: Revisiting large kernel and U-shaped ViT for efficient medical image segmentation

Fenghe Tang, Bingkun Nian, Jianrui Ding, Wenxin Ma, Quan Quan, Chengqi Dong, Jie Yang, Wei Liu, S. Kevin Zhou

arxiv logopreprintAug 1 2025
In clinical practice, medical image analysis often requires efficient execution on resource-constrained mobile devices. However, existing mobile models-primarily optimized for natural images-tend to perform poorly on medical tasks due to the significant information density gap between natural and medical domains. Combining computational efficiency with medical imaging-specific architectural advantages remains a challenge when developing lightweight, universal, and high-performing networks. To address this, we propose a mobile model called Mobile U-shaped Vision Transformer (Mobile U-ViT) tailored for medical image segmentation. Specifically, we employ the newly purposed ConvUtr as a hierarchical patch embedding, featuring a parameter-efficient large-kernel CNN with inverted bottleneck fusion. This design exhibits transformer-like representation learning capacity while being lighter and faster. To enable efficient local-global information exchange, we introduce a novel Large-kernel Local-Global-Local (LGL) block that effectively balances the low information density and high-level semantic discrepancy of medical images. Finally, we incorporate a shallow and lightweight transformer bottleneck for long-range modeling and employ a cascaded decoder with downsample skip connections for dense prediction. Despite its reduced computational demands, our medical-optimized architecture achieves state-of-the-art performance across eight public 2D and 3D datasets covering diverse imaging modalities, including zero-shot testing on four unseen datasets. These results establish it as an efficient yet powerful and generalization solution for mobile medical image analysis. Code is available at https://github.com/FengheTan9/Mobile-U-ViT.
Page 23 of 59587 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.