Sort by:
Page 22 of 55541 results

Latent-k-space of Refinement Diffusion Model for Accelerated MRI Reconstruction.

Lu Y, Xie X, Wang S, Liu Q

pubmed logopapersJul 24 2025
Recent advances have applied diffusion model (DM) to magnetic resonance imaging (MRI) reconstruction, demonstrating impressive performance. However, current DM-based MRI reconstruction methods suffer from two critical limitations. First, they model image features at the pixel-level and require numerous iterations for the final image reconstruction, leading to high computational costs. Second, most of these methods operate in the image domain, which cannot avoid the introduction of secondary artifacts. To address these challenges, we propose a novel latent-k-space refinement diffusion model (LRDM) for MRI reconstruction. Specifically, we encode the original k-space data into a highly compact latent space to capture the primary features for accelerated acquisition and apply DM in the low-dimensional latent-k-space to generate prior knowledge. The compact latent space allows the DM to require only 4 iterations to generate accurate priors. To compensate for the inevitable loss of detail during latent-k-space diffusion, we incorporate an additional diffusion model focused exclusively on refining high-frequency structures and features. The results from both models are then decoded and combined to obtain the final reconstructed image. Experimental results demonstrate that the proposed method significantly reduces reconstruction time while delivering comparable image reconstruction quality to conventional DM-based approaches.&#xD.

SUP-Net: Slow-time Upsampling Network for Aliasing Removal in Doppler Ultrasound.

Nahas H, Yu ACH

pubmed logopapersJul 24 2025
Doppler ultrasound modalities, which include spectral Doppler and color flow imaging, are frequently used tools for flow diagnostics because of their real-time point-of-care applicability and high temporal resolution. When implemented using pulse-echo sensing and phase shift estimation principles, this modality's pulse repetition frequency (PRF) is known to influence the maximum detectable velocity. If the PRF is inevitably set below the Nyquist limit due to imaging requirements or hardware constraints, aliasing errors or spectral overlap may corrupt the estimated flow data. To solve this issue, we have devised a deep learning-based framework, powered by a custom slow-time upsampling network (SUP-Net) that leverages spatiotemporal characteristics to upsample the received ultrasound signals across pulse echoes acquired using high-frame-rate ultrasound (HiFRUS). Our framework infers high-PRF signals from signals acquired at low PRF, thereby improving Doppler ultrasound's flow estimation quality. SUP-Net was trained and evaluated on in vivo femoral acquisitions from 20 participants and was applied recursively to resolve scenarios with excessive aliasing across a range of PRFs. We report the successful reconstruction of slow-time signals with frequency content that exceeds the Nyquist limit once and twice. By operating on the fundamental slow-time signals, our framework can resolve aliasing-related artifacts in several downstream modalities, including color Doppler and pulse wave Doppler.

Deep Learning-Driven High Spatial Resolution Attenuation Imaging for Ultrasound Tomography (AI-UT).

Liu M, Kou Z, Wiskin JW, Czarnota GJ, Oelze ML

pubmed logopapersJul 24 2025
Ultrasonic attenuation can be used to characterize tissue properties of the human breast. Both quantitative ultrasound (QUS) and ultrasound tomography (USCT) can provide attenuation estimation. However, limitations have been identified for both approaches. In QUS, the generation of attenuation maps involves separating the whole image into different data blocks. The optimal size of the data block is around 15 to 30 pulse lengths, which dramatically decreases the spatial resolution for attenuation imaging. In USCT, the attenuation is often estimated with a full wave inversion (FWI) method, which is affected by background noise. In order to achieve a high resolution attenuation image with low variance, a deep learning (DL) based method was proposed. In the approach, RF data from 60 angle views from the QTI Breast Acoustic CT<sup>TM</sup> Scanner were acquired as the input and attenuation images as the output. To improve image quality for the DL method, the spatial correlation between speed of sound (SOS) and attenuation were used as a constraint in the model. The results indicated that by including the SOS structural information, the performance of the model was improved. With a higher spatial resolution attenuation image, further segmentation of the breast can be achieved. The structural information and actual attenuation values provided by DL-generated attenuation images were validated with the values from the literature and the SOS-based segmentation map. The information provided by DL-generated attenuation images can be used as an additional biomarker for breast cancer diagnosis.

Evaluation of Brain Stiffness in Patients Undergoing Carotid Angioplasty and Stenting Using Magnetic Resonance Elastography.

Wu CH, Murphy MC, Chiang CC, Chen ST, Chung CP, Lirng JF, Luo CB, Rossman PJ, Ehman RL, Huston J, Chang FC

pubmed logopapersJul 24 2025
Percutaneous transluminal angioplasty and stenting (PTAS) in patients with carotid stenosis may have potential effects on brain parenchyma. However, current studies on parenchymal changes are scarce due to the need for advanced imaging modalities. Consequently, the alterations in brain parenchyma following PTAS remain an unsolved issue. To investigate changes to the brain parenchyma using magnetic resonance elastography (MRE). Prospective. 13 patients (6 women and 7 men; 39 MRI imaging sessions) with severe unilateral carotid stenosis patients indicated for PTAS were recruited between 2021 and 2024. Noncontrast MRI sequences including MRE (spin echo) were acquired using 3 T scanners. All patients underwent MRE before (preprocedural), within 24 h (early postprocedural) and 3 months after (delayed postprocedural) PTAS. Preprocedural and delayed postprocedural ultrasonographic peak systolic velocity (PSV) was recorded. MRE stiffness and damping ratio were evaluated via neural network inversion of the whole brain, in 14 gray matter (GM) and 12 white matter (WM) regions. Stiffness and damping ratio differences between each pair of MR sessions for each subject were identified by paired sample t tests. The correlations of stiffness and damping ratio with stenosis grade and ultrasonographic PSV dynamics were evaluated by Pearson correlation coefficients. The statistical significance was defined as p < 0.05. The stiffness of lesion side insula, deep GM, and deep WM increased significantly from preprocedural to delayed postprocedural MRE. Increasing deep GM stiffness on the lesion side was positively correlated with the DSA stenosis grade significantly (r = 0.609). The lesion side insula stiffness increments were positively correlated with PSV decrements significantly (r = 0.664). Regional brain stiffness increased 3 months after PTAS. Lesion side stiffness was positively correlated with stenosis grades in deep GM and PSV decrements in the insula. EVIDENCE LEVEL: 2. Stage 2.

Elucidating the Design Space of Arbitrary-Noise-Based Diffusion Models

Xingyu Qiu, Mengying Yang, Xinghua Ma, Dong Liang, Yuzhen Li, Fanding Li, Gongning Luo, Wei Wang, Kuanquan Wang, Shuo Li

arxiv logopreprintJul 24 2025
EDM elucidates the unified design space of diffusion models, yet its fixed noise patterns restricted to pure Gaussian noise, limit advancements in image restoration. Our study indicates that forcibly injecting Gaussian noise corrupts the degraded images, overextends the image transformation distance, and increases restoration complexity. To address this problem, our proposed EDA Elucidates the Design space of Arbitrary-noise-based diffusion models. Theoretically, EDA expands the freedom of noise pattern while preserving the original module flexibility of EDM, with rigorous proof that increased noise complexity incurs no additional computational overhead during restoration. EDA is validated on three typical tasks: MRI bias field correction (global smooth noise), CT metal artifact reduction (global sharp noise), and natural image shadow removal (local boundary-aware noise). With only 5 sampling steps, EDA outperforms most task-specific methods and achieves state-of-the-art performance in bias field correction and shadow removal.

Thin-Slice Brain CT Image Quality and Lesion Detection Evaluation in Deep Learning Reconstruction Algorithm.

Sun J, Yao H, Han T, Wang Y, Yang L, Hao X, Wu S

pubmed logopapersJul 23 2025
Clinical evaluation of Artificial Intelligence (AI)-based Precise Image (PI) algorithm in brain imaging remains limited. PI is a deep-learning reconstruction (DLR) technique that reduces image noise while maintaining a familiar Filtered Back Projection (FBP)-like appearance at low doses. This study aims to compare PI, Iterative Reconstruction (IR), and FBP-in improving image quality and enhancing lesion detection in 1.0 mm thin-slice brain computed tomography (CT) images. A retrospective analysis was conducted on brain non-contrast CT scans from August to September 2024 at our institution. Each scan was reconstructed using four methods: routine 5.0 mm FBP (Group A), thin-slice 1.0 mm FBP (Group B), thin-slice 1.0 mm IR (Group C), and thin-slice 1.0 mm PI (Group D). Subjective image quality was assessed by two radiologists using a 4- or 5‑point Likert scale. Objective metrics included contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and image noise across designated regions of interest (ROIs). 60 patients (65.47 years ± 18.40; 29 males and 31 females) were included. Among these, 39 patients had lesions, primarily low-density lacunar infarcts. Thin-slice PI images demonstrated the lowest image noise and artifacts, alongside the highest CNR and SNR values (p < 0.001) compared to Groups A, B, and C. Subjective assessments revealed that both PI and IR provided significantly improved image quality over routine FBP (p < 0.05). Specifically, Group D (PI) achieved superior lesion conspicuity and diagnostic confidence, with a 100% detection rate for lacunar lesions, outperforming Groups B and A. PI reconstruction significantly enhances image quality and lesion detectability in thin-slice brain CT scans compared to IR and FBP, suggesting its potential as a new clinical standard.

Verification of resolution and imaging time for high-resolution deep learning reconstruction techniques.

Harada S, Takatsu Y, Murayama K, Sano Y, Ikedo M

pubmed logopapersJul 22 2025
Magnetic resonance imaging (MRI) involves a trade-off between imaging time, signal-to-noise ratio (SNR), and spatial resolution. Reducing the imaging time often leads to a lower SNR or resolution. Deep-learning-based reconstruction (DLR) methods have been introduced to address these limitations. Image-domain super-resolution DLR enables high resolution without additional image scans. High-quality images can be obtained within a shorter timeframe by appropriately configuring DLR parameters. It is necessary to maximize the performance of super-resolution DLR to enable efficient use in MRI. We evaluated the performance of a vendor-provided super-resolution DLR method (PIQE) on a Canon 3 T MRI scanner using an edge phantom and clinical brain images from eight patients. Quantitative assessment included structural similarity index (SSIM), peak SNR (PSNR), root mean square error (RMSE), and full width at half maximum (FWHM). FWHM was used to quantitatively assess spatial resolution and image sharpness. Visual evaluation using a five-point Likert scale was also performed to assess perceived image quality. Image domain super-resolution DLR reduced scan time by up to 70 % while preserving the structural image quality. Acquisition matrices of 0.87 mm/pixel or finer with a zoom ratio of ×2 yielded SSIM ≥0.80, PSNR ≥35 dB, and non-significant FWHM differences compared to full-resolution references. In contrast, aggressive downsampling (zoom ratio 3 from low-resolution matrices) led to image degradation including truncation artifacts and reduced sharpness. These results clarify the optimal use of PIQE as an image-domain super-resolution method and provide practical guidance for its application in clinical MRI workflows.

Harmonization in Magnetic Resonance Imaging: A Survey of Acquisition, Image-level, and Feature-level Methods

Qinqin Yang, Firoozeh Shomal-Zadeh, Ali Gholipour

arxiv logopreprintJul 22 2025
Modern medical imaging technologies have greatly advanced neuroscience research and clinical diagnostics. However, imaging data collected across different scanners, acquisition protocols, or imaging sites often exhibit substantial heterogeneity, known as "batch effects" or "site effects". These non-biological sources of variability can obscure true biological signals, reduce reproducibility and statistical power, and severely impair the generalizability of learning-based models across datasets. Image harmonization aims to eliminate or mitigate such site-related biases while preserving meaningful biological information, thereby improving data comparability and consistency. This review provides a comprehensive overview of key concepts, methodological advances, publicly available datasets, current challenges, and future directions in the field of medical image harmonization, with a focus on magnetic resonance imaging (MRI). We systematically cover the full imaging pipeline, and categorize harmonization approaches into prospective acquisition and reconstruction strategies, retrospective image-level and feature-level methods, and traveling-subject-based techniques. Rather than providing an exhaustive survey, we focus on representative methods, with particular emphasis on deep learning-based approaches. Finally, we summarize the major challenges that remain and outline promising avenues for future research.

AgentMRI: A Vison Language Model-Powered AI System for Self-regulating MRI Reconstruction with Multiple Degradations.

Sajua GA, Akhib M, Chang Y

pubmed logopapersJul 22 2025
Artificial intelligence (AI)-driven autonomous agents are transforming multiple domains by integrating reasoning, decision-making, and task execution into a unified framework. In medical imaging, such agents have the potential to change workflows by reducing human intervention and optimizing image quality. In this paper, we introduce the AgentMRI. It is an AI-driven system that leverages vision language models (VLMs) for fully autonomous magnetic resonance imaging (MRI) reconstruction in the presence of multiple degradations. Unlike traditional MRI correction or reconstruction methods, AgentMRI does not rely on manual intervention for post-processing or does not rely on fixed correction models. Instead, it dynamically detects MRI corruption and then automatically selects the best correction model for image reconstruction. The framework uses a multi-query VLM strategy to ensure robust corruption detection through consensus-based decision-making and confidence-weighted inference. AgentMRI automatically chooses deep learning models that include MRI reconstruction, motion correction, and denoising models. We evaluated AgentMRI in both zero-shot and fine-tuned settings. Experimental results on a comprehensive brain MRI dataset demonstrate that AgentMRI achieves an average of 73.6% accuracy in zero-shot and 95.1% accuracy for fine-tuned settings. Experiments show that it accurately executes the reconstruction process without human intervention. AgentMRI eliminates manual intervention and introduces a scalable and multimodal AI framework for autonomous MRI processing. This work may build a significant step toward fully autonomous and intelligent MR image reconstruction systems.

A Tutorial on MRI Reconstruction: From Modern Methods to Clinical Implications

Tolga Çukur, Salman U. H. Dar, Valiyeh Ansarian Nezhad, Yohan Jun, Tae Hyung Kim, Shohei Fujita, Berkin Bilgic

arxiv logopreprintJul 22 2025
MRI is an indispensable clinical tool, offering a rich variety of tissue contrasts to support broad diagnostic and research applications. Clinical exams routinely acquire multiple structural sequences that provide complementary information for differential diagnosis, while research protocols often incorporate advanced functional, diffusion, spectroscopic, and relaxometry sequences to capture multidimensional insights into tissue structure and composition. However, these capabilities come at the cost of prolonged scan times, which reduce patient throughput, increase susceptibility to motion artifacts, and may require trade-offs in image quality or diagnostic scope. Over the last two decades, advances in image reconstruction algorithms--alongside improvements in hardware and pulse sequence design--have made it possible to accelerate acquisitions while preserving diagnostic quality. Central to this progress is the ability to incorporate prior information to regularize the solutions to the reconstruction problem. In this tutorial, we overview the basics of MRI reconstruction and highlight state-of-the-art approaches, beginning with classical methods that rely on explicit hand-crafted priors, and then turning to deep learning methods that leverage a combination of learned and crafted priors to further push the performance envelope. We also explore the translational aspects and eventual clinical implications of these methods. We conclude by discussing future directions to address remaining challenges in MRI reconstruction. The tutorial is accompanied by a Python toolbox (https://github.com/tutorial-MRI-recon/tutorial) to demonstrate select methods discussed in the article.
Page 22 of 55541 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.