Sort by:
Page 22 of 59587 results

UNISELF: A Unified Network with Instance Normalization and Self-Ensembled Lesion Fusion for Multiple Sclerosis Lesion Segmentation

Jinwei Zhang, Lianrui Zuo, Blake E. Dewey, Samuel W. Remedios, Yihao Liu, Savannah P. Hays, Dzung L. Pham, Ellen M. Mowry, Scott D. Newsome, Peter A. Calabresi, Aaron Carass, Jerry L. Prince

arxiv logopreprintAug 6 2025
Automated segmentation of multiple sclerosis (MS) lesions using multicontrast magnetic resonance (MR) images improves efficiency and reproducibility compared to manual delineation, with deep learning (DL) methods achieving state-of-the-art performance. However, these DL-based methods have yet to simultaneously optimize in-domain accuracy and out-of-domain generalization when trained on a single source with limited data, or their performance has been unsatisfactory. To fill this gap, we propose a method called UNISELF, which achieves high accuracy within a single training domain while demonstrating strong generalizability across multiple out-of-domain test datasets. UNISELF employs a novel test-time self-ensembled lesion fusion to improve segmentation accuracy, and leverages test-time instance normalization (TTIN) of latent features to address domain shifts and missing input contrasts. Trained on the ISBI 2015 longitudinal MS segmentation challenge training dataset, UNISELF ranks among the best-performing methods on the challenge test dataset. Additionally, UNISELF outperforms all benchmark methods trained on the same ISBI training data across diverse out-of-domain test datasets with domain shifts and missing contrasts, including the public MICCAI 2016 and UMCL datasets, as well as a private multisite dataset. These test datasets exhibit domain shifts and/or missing contrasts caused by variations in acquisition protocols, scanner types, and imaging artifacts arising from imperfect acquisition. Our code is available at https://github.com/uponacceptance.

Automated Deep Learning-based Segmentation of the Dentate Nucleus Using Quantitative Susceptibility Mapping MRI.

Shiraishi DH, Saha S, Adanyeguh IM, Cocozza S, Corben LA, Deistung A, Delatycki MB, Dogan I, Gaetz W, Georgiou-Karistianis N, Graf S, Grisoli M, Henry PG, Jarola GM, Joers JM, Langkammer C, Lenglet C, Li J, Lobo CC, Lock EF, Lynch DR, Mareci TH, Martinez ARM, Monti S, Nigri A, Pandolfo M, Reetz K, Roberts TP, Romanzetti S, Rudko DA, Scaravilli A, Schulz JB, Subramony SH, Timmann D, França MC, Harding IH, Rezende TJR

pubmed logopapersAug 6 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a dentate nucleus (DN) segmentation tool using deep learning (DL) applied to brain MRI-based quantitative susceptibility mapping (QSM) images. Materials and Methods Brain QSM images from healthy controls and individuals with cerebellar ataxia or multiple sclerosis were collected from nine different datasets (2016-2023) worldwide for this retrospective study (ClinicalTrials.gov Identifier: NCT04349514). Manual delineation of the DN was performed by experienced raters. Automated segmentation performance was evaluated against manual reference segmentations following training with several DL architectures. A two-step approach was used, consisting of a localization model followed by DN segmentation. Performance metrics included intraclass correlation coefficient (ICC), Dice score, and Pearson correlation coefficient. Results The training and testing datasets comprised 328 individuals (age range, 11-64 years; 171 female), including 141 healthy individuals and 187 with cerebellar ataxia or multiple sclerosis. The manual tracing protocol produced reference standards with high intrarater (average ICC 0.91) and interrater reliability (average ICC 0.78). Initial DL architecture exploration indicated that the nnU-Net framework performed best. The two-step localization plus segmentation pipeline achieved a Dice score of 0.90 ± 0.03 and 0.89 ± 0.04 for left and right DN segmentation, respectively. In external testing, the proposed algorithm outperformed the current leading automated tool (mean Dice scores for left and right DN: 0.86 ± 0.04 vs 0.57 ± 0.22, <i>P</i> < .001; 0.84 ± 0.07 vs 0.58 ± 0.24, <i>P</i> < .001). The model demonstrated generalizability across datasets unseen during the training step, with automated segmentations showing high correlation with manual annotations (left DN: r = 0.74; <i>P</i> < .001; right DN: r = 0.48; <i>P</i> = .03). Conclusion The proposed model accurately and efficiently segmented the DN from brain QSM images. The model is publicly available (https://github.com/art2mri/DentateSeg). ©RSNA, 2025.

Improving 3D Thin Vessel Segmentation in Brain TOF-MRA via a Dual-space Context-Aware Network.

Shan W, Li X, Wang X, Li Q, Wang Z

pubmed logopapersAug 6 2025
3D cerebrovascular segmentation poses a significant challenge, akin to locating a line within a vast 3D environment. This complexity can be substantially reduced by projecting the vessels onto a 2D plane, enabling easier segmentation. In this paper, we create a vessel-segmentation-friendly space using a clinical visualization technique called maximum intensity projection (MIP). Leveraging this, we propose a Dual-space Context-Aware Network (DCANet) for 3D vessel segmentation, designed to capture even the finest vessel structures accurately. DCANet begins by transforming a magnetic resonance angiography (MRA) volume into a 3D Regional-MIP volume, where each Regional-MIP slice is constructed by projecting adjacent MRA slices. This transformation highlights vessels as prominent continuous curves rather than the small circular or ellipsoidal cross-sections seen in MRA slices. DCANet encodes vessels separately in the MRA and the projected Regional-MIP spaces and introduces the Regional-MIP Image Fusion Block (MIFB) between these dual spaces to selectively integrate contextual features from Regional-MIP into MRA. Following dual-space encoding, DCANet employs a Dual-mask Spatial Guidance TransFormer (DSGFormer) decoder to focus on vessel regions while effectively excluding background areas, which reduces the learning burden and improves segmentation accuracy. We benchmark DCANet on four datasets: two public datasets, TubeTK and IXI-IOP, and two in-house datasets, Xiehe and IXI-HH. The results demonstrate that DCANet achieves superior performance, with improvements in average DSC values of at least 2.26%, 2.17%, 2.62%, and 2.58% for thin vessels, respectively. Codes are available at: https://github.com/shanwq/DCANet.

DDTracking: A Deep Generative Framework for Diffusion MRI Tractography with Streamline Local-Global Spatiotemporal Modeling

Yijie Li, Wei Zhang, Xi Zhu, Ye Wu, Yogesh Rathi, Lauren J. O'Donnell, Fan Zhang

arxiv logopreprintAug 6 2025
This paper presents DDTracking, a novel deep generative framework for diffusion MRI tractography that formulates streamline propagation as a conditional denoising diffusion process. In DDTracking, we introduce a dual-pathway encoding network that jointly models local spatial encoding (capturing fine-scale structural details at each streamline point) and global temporal dependencies (ensuring long-range consistency across the entire streamline). Furthermore, we design a conditional diffusion model module, which leverages the learned local and global embeddings to predict streamline propagation orientations for tractography in an end-to-end trainable manner. We conduct a comprehensive evaluation across diverse, independently acquired dMRI datasets, including both synthetic and clinical data. Experiments on two well-established benchmarks with ground truth (ISMRM Challenge and TractoInferno) demonstrate that DDTracking largely outperforms current state-of-the-art tractography methods. Furthermore, our results highlight DDTracking's strong generalizability across heterogeneous datasets, spanning varying health conditions, age groups, imaging protocols, and scanner types. Collectively, DDTracking offers anatomically plausible and robust tractography, presenting a scalable, adaptable, and end-to-end learnable solution for broad dMRI applications. Code is available at: https://github.com/yishengpoxiao/DDtracking.git

Segmenting Whole-Body MRI and CT for Multiorgan Anatomic Structure Delineation.

Häntze H, Xu L, Mertens CJ, Dorfner FJ, Donle L, Busch F, Kader A, Ziegelmayer S, Bayerl N, Navab N, Rueckert D, Schnabel J, Aerts HJWL, Truhn D, Bamberg F, Weiss J, Schlett CL, Ringhof S, Niendorf T, Pischon T, Kauczor HU, Nonnenmacher T, Kröncke T, Völzke H, Schulz-Menger J, Maier-Hein K, Hering A, Prokop M, van Ginneken B, Makowski MR, Adams LC, Bressem KK

pubmed logopapersAug 6 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop and validate MRSegmentator, a retrospective cross-modality deep learning model for multiorgan segmentation of MRI scans. Materials and Methods This retrospective study trained MRSegmentator on 1,200 manually annotated UK Biobank Dixon MRI sequences (50 participants), 221 in-house abdominal MRI sequences (177 patients), and 1228 CT scans from the TotalSegmentator-CT dataset. A human-in-the-loop annotation workflow leveraged cross-modality transfer learning from an existing CT segmentation model to segment 40 anatomic structures. The model's performance was evaluated on 900 MRI sequences from 50 participants in the German National Cohort (NAKO), 60 MRI sequences from AMOS22 dataset, and 29 MRI sequences from TotalSegmentator-MRI. Reference standard manual annotations were used for comparison. Metrics to assess segmentation quality included Dice Similarity Coefficient (DSC). Statistical analyses included organ-and sequence-specific mean ± SD reporting and two-sided <i>t</i> tests for demographic effects. Results 139 participants were evaluated; demographic information was available for 70 (mean age 52.7 years ± 14.0 [SD], 36 female). Across all test datasets, MRSegmentator demonstrated high class wise DSC for well-defined organs (lungs: 0.81-0.96, heart: 0.81-0.94) and organs with anatomic variability (liver: 0.82-0.96, kidneys: 0.77-0.95). Smaller structures showed lower DSC (portal/splenic veins: 0.64-0.78, adrenal glands: 0.56-0.69). The average DSC on the external testing using NAKO data, ranged from 0.85 ± 0.08 for T2-HASTE to 0.91 ± 0.05 for in-phase sequences. The model generalized well to CT, achieving mean DSC of 0.84 ± 0.12 on AMOS CT data. Conclusion MRSegmentator accurately segmented 40 anatomic structures on MRI and generalized to CT; outperforming existing open-source tools. Published under a CC BY 4.0 license.

Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation

Johannes Tischer, Patric Kienast, Marlene Stümpflen, Gregor Kasprian, Georg Langs, Roxane Licandro

arxiv logopreprintAug 6 2025
Magnetic Resonance Imaging (MRI) of the fetal brain has become a key tool for studying brain development in vivo. Yet, its assessment remains challenging due to variability in brain maturation, imaging protocols, and uncertain estimates of Gestational Age (GA). To overcome these, brain atlases provide a standardized reference framework that facilitates objective evaluation and comparison across subjects by aligning the atlas and subjects in a common coordinate system. In this work, we introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases for real-time fetal brain tissue segmentation. The framework combines a direct registration model with a conditional discriminator. Trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation. The method achieves high registration accuracy, captures dynamic anatomical changes with sharp structural detail, and robust segmentation performance with an average Dice Similarity Coefficient (DSC) of 86.3% across six brain tissues. Furthermore, volumetric analysis of the generated atlases reveals detailed neurotypical growth trajectories, providing valuable insights into the maturation of the fetal brain. This approach enables individualized developmental assessment with minimal pre-processing and real-time performance, supporting both research and clinical applications. The model code is available at https://github.com/cirmuw/fetal-brain-atlas

Prediction of breast cancer HER2 status changes based on ultrasound radiomics attention network.

Liu J, Xue X, Yan Y, Song Q, Cheng Y, Wang L, Wang X, Xu D

pubmed logopapersAug 5 2025
Following Neoadjuvant Chemotherapy (NAC), there exists a probability of changes occurring in the Human Epidermal Growth Factor Receptor 2 (HER2) status. If these changes are not promptly addressed, it could hinder the timely adjustment of treatment plans, thereby affecting the optimal management of breast cancer. Consequently, the accurate prediction of HER2 status changes holds significant clinical value, underscoring the need for a model capable of precisely forecasting these alterations. In this paper, we elucidate the intricacies surrounding HER2 status changes, and propose a deep learning architecture combined with radiomics techniques, named as Ultrasound Radiomics Attention Network (URAN), to predict HER2 status changes. Firstly, radiomics technology is used to extract ultrasound image features to provide rich and comprehensive medical information. Secondly, HER2 Key Feature Selection (HKFS) network is constructed for retain crucial features relevant to HER2 status change. Thirdly, we design Max and Average Attention and Excitation (MAAE) network to adjust the model's focus on different key features. Finally, a fully connected neural network is utilized to predict HER2 status changes. The code to reproduce our experiments can be found at https://github.com/joanaapa/Foundation-Medical. Our research was carried out using genuine ultrasound images sourced from hospitals. On this dataset, URAN outperformed both state-of-the-art and traditional methods in predicting HER2 status changes, achieving an accuracy of 0.8679 and an AUC of 0.8328 (95% CI: 0.77-0.90). Comparative experiments on the public BUS_UCLM dataset further demonstrated URAN's superiority, attaining an accuracy of 0.9283 and an AUC of 0.9161 (95% CI: 0.91-0.92). Additionally, we undertook rigorously crafted ablation studies, which validated the logicality and effectiveness of the radiomics techniques, as well as the HKFS and MAAE modules integrated within the URAN model. The results pertaining to specific HER2 statuses indicate that URAN exhibits superior accuracy in predicting changes in HER2 status characterized by low expression and IHC scores of 2+ or below. Furthermore, we examined the radiomics attributes of ultrasound images and discovered that various wavelet transform features significantly impacted the changes in HER2 status. We have developed a URAN method for predicting HER2 status changes that combines radiomics techniques and deep learning. URAN model have better predictive performance compared to other competing algorithms, and can mine key radiomics features related to HER2 status changes.

STARFormer: A novel spatio-temporal aggregation reorganization transformer of FMRI for brain disorder diagnosis.

Dong W, Li Y, Zeng W, Chen L, Yan H, Siok WT, Wang N

pubmed logopapersAug 5 2025
Many existing methods that use functional magnetic resonance imaging (fMRI) to classify brain disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), often overlook the integration of spatial and temporal dependencies of the blood oxygen level-dependent (BOLD) signals, which may lead to inaccurate or imprecise classification results. To solve this problem, we propose a spatio-temporal aggregation reorganization transformer (STARFormer) that effectively captures both spatial and temporal features of BOLD signals by incorporating three key modules. The region of interest (ROI) spatial structure analysis module uses eigenvector centrality (EC) to reorganize brain regions based on effective connectivity, highlighting critical spatial relationships relevant to the brain disorder. The temporal feature reorganization module systematically segments the time series into equal-dimensional window tokens and captures multiscale features through variable window and cross-window attention. The spatio-temporal feature fusion module employs a parallel transformer architecture with dedicated temporal and spatial branches to extract integrated features. The proposed STARFormer has been rigorously evaluated on two publicly available datasets for the classification of ASD and ADHD. The experimental results confirm that STARFormer achieves state-of-the-art performance across multiple evaluation metrics, providing a more accurate and reliable tool for the diagnosis of brain disorders and biomedical research. The official implementation codes are available at: https://github.com/NZWANG/STARFormer.

Are Vision-xLSTM-embedded U-Nets better at segmenting medical images?

Dutta P, Bose S, Roy SK, Mitra S

pubmed logopapersAug 5 2025
The development of efficient segmentation strategies for medical images has evolved from its initial dependence on Convolutional Neural Networks (CNNs) to the current investigation of hybrid models that combine CNNs with Vision Transformers (ViTs). There is an increasing focus on developing architectures that are both high-performing and computationally efficient, capable of being deployed on remote systems with limited resources. Although transformers can capture global dependencies in the input space, they face challenges from the corresponding high computational and storage expenses involved. The objective of this research is to propose that Vision Extended Long Short-Term Memory (Vision-xLSTM) forms an appropriate backbone for medical image segmentation, offering excellent performance with reduced computational costs. This study investigates the integration of CNNs with Vision-xLSTM by introducing the novel U-VixLSTM. The Vision-xLSTM blocks capture the temporal and global relationships within the patches extracted from the CNN feature maps. The convolutional feature reconstruction path upsamples the output volume from the Vision-xLSTM blocks to produce the segmentation output. The U-VixLSTM exhibits superior performance compared to the state-of-the-art networks in the publicly available Synapse, ISIC and ACDC datasets. The findings suggest that U-VixLSTM is a promising alternative to ViTs for medical image segmentation, delivering effective performance without substantial computational burden. This makes it feasible for deployment in healthcare environments with limited resources for faster diagnosis. Code provided: https://github.com/duttapallabi2907/U-VixLSTM.

R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation

Futian Wang, Yuhan Qiao, Xiao Wang, Fuling Wang, Yuxiang Zhang, Dengdi Sun

arxiv logopreprintAug 5 2025
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.
Page 22 of 59587 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.