Sort by:
Page 22 of 30293 results

A Novel Deep Learning Framework for Nipple Segmentation in Digital Mammography.

Rogozinski M, Hurtado J, Sierra-Franco CA, R Hall Barbosa C, Raposo A

pubmed logopapersJun 3 2025
This study introduces a novel methodology to enhance nipple segmentation in digital mammography, a critical component for accurate medical analysis and computer-aided detection systems. The nipple is a key anatomical landmark for multi-view and multi-modality breast image registration, where accurate localization is vital for ensuring image quality and enabling precise registration of anomalies across different mammographic views. The proposed approach significantly outperforms baseline methods, particularly in challenging cases where previous techniques failed. It achieved successful detection across all cases and reached a mean Intersection over Union (mIoU) of 0.63 in instances where the baseline failed entirely. Additionally, it yielded nearly a tenfold improvement in Hausdorff distance and consistent gains in overlap-based metrics, with the mIoU increasing from 0.7408 to 0.8011 in the craniocaudal (CC) view and from 0.7488 to 0.7767 in the mediolateral oblique (MLO) view. Furthermore, its generalizability suggests the potential for application to other breast imaging modalities and related domains facing challenges such as class imbalance and high variability in object characteristics.

Validation of a Dynamic Risk Prediction Model Incorporating Prior Mammograms in a Diverse Population.

Jiang S, Bennett DL, Colditz GA

pubmed logopapersJun 2 2025
For breast cancer risk prediction to be clinically useful, it must be accurate and applicable to diverse groups of women across multiple settings. To examine whether a dynamic risk prediction model incorporating prior mammograms, previously validated in Black and White women, could predict future risk of breast cancer across a racially and ethnically diverse population in a population-based screening program. This prognostic study included women aged 40 to 74 years with 1 or more screening mammograms drawn from the British Columbia Breast Screening Program from January 1, 2013, to December 31, 2019, with follow-up via linkage to the British Columbia Cancer Registry through June 2023. This provincial, organized screening program offers screening mammography with full field digital mammography (FFDM) every 2 years. Data were analyzed from May to August 2024. FFDM-based, artificial intelligence-generated mammogram risk score (MRS), including up to 4 years of prior mammograms. The primary outcomes were 5-year risk of breast cancer (measured with the area under the receiver operating characteristic curve [AUROC]) and absolute risk of breast cancer calibrated to the US Surveillance, Epidemiology, and End Results incidence rates. Among 206 929 women (mean [SD] age, 56.1 [9.7] years; of 118 093 with data on race, there were 34 266 East Asian; 1946 Indigenous; 6116 South Asian; and 66 742 White women), there were 4168 pathology-confirmed incident breast cancers diagnosed through June 2023. Mean (SD) follow-up time was 5.3 (3.0) years. Using up to 4 years of prior mammogram images in addition to the most current mammogram, a 5-year AUROC of 0.78 (95% CI, 0.77-0.80) was obtained based on analysis of images alone. Performance was consistent across subgroups defined by race and ethnicity in East Asian (AUROC, 0.77; 95% CI, 0.75-0.79), Indigenous (AUROC, 0.77; 95% CI 0.71-0.83), and South Asian (AUROC, 0.75; 95% CI 0.71-0.79) women. Stratification by age gave a 5-year AUROC of 0.76 (95% CI, 0.74-0.78) for women aged 50 years or younger and 0.80 (95% CI, 0.78-0.82) for women older than 50 years. There were 18 839 participants (9.0%) with a 5-year risk greater than 3%, and the positive predictive value was 4.9% with an incidence of 11.8 per 1000 person-years. A dynamic MRS generated from both current and prior mammograms showed robust performance across diverse racial and ethnic populations in a province-wide screening program starting from age 40 years, reflecting improved accuracy for racially and ethnically diverse populations.

A Comparative Performance Analysis of Regular Expressions and an LLM-Based Approach to Extract the BI-RADS Score from Radiological Reports

Dennstaedt, F., Lerch, L., Schmerder, M., Cihoric, N., Cerghetti, G. M., Gaio, R., Bonel, H., Filchenko, I., Hastings, J., Dammann, F., Aebersold, D. M., von Tengg, H., Nairz, K.

medrxiv logopreprintJun 2 2025
BackgroundDifferent Natural Language Processing (NLP) techniques have demonstrated promising results for data extraction from radiological reports. Both traditional rule-based methods like regular expressions (Regex) and modern Large Language Models (LLMs) can extract structured information. However, comparison between these approaches for extraction of specific radiological data elements has not been widely conducted. MethodsWe compared accuracy and processing time between Regex and LLM-based approaches for extracting BI-RADS scores from 7,764 radiology reports (mammography, ultrasound, MRI, and biopsy). We developed a rule-based algorithm using Regex patterns and implemented an LLM-based extraction using the Rombos-LLM-V2.6-Qwen-14b model. A ground truth dataset of 199 manually classified reports was used for evaluation. ResultsThere was no statistically significant difference in the accuracy in extracting BI-RADS scores between Regex and an LLM-based method (accuracy of 89.20% for Regex versus 87.69% for the LLM-based method; p=0.56). Compared to the LLM-based method, Regex processing was more efficient, completing the task 28,120 times faster (0.06 seconds vs. 1687.20 seconds). Further analysis revealed LLMs favored common classifications (particularly BI-RADS value of 2) while Regex more frequently returned "unclear" values. We also could confirm in our sample an already known laterality bias for breast cancer (BI-RADS 6) and detected a slight laterality skew for suspected breast cancer (BI-RADS 5) as well. ConclusionFor structured, standardized data like BI-RADS, traditional NLP techniques seem to be superior, though future work should explore hybrid approaches combining Regex precision for standardized elements with LLM contextual understanding for more complex information extraction tasks.

Synthetic Ultrasound Image Generation for Breast Cancer Diagnosis Using cVAE-WGAN Models: An Approach Based on Generative Artificial Intelligence

Mondillo, G., Masino, M., Colosimo, S., Perrotta, A., Frattolillo, V., Abbate, F. G.

medrxiv logopreprintJun 2 2025
The scarcity and imbalance of medical image datasets hinder the development of robust computer-aided diagnosis (CAD) systems for breast cancer. This study explores the application of advanced generative models, based on generative artificial intelligence (GenAI), for the synthesis of digital breast ultrasound images. Using a hybrid Conditional Variational Autoencoder-Wasserstein Generative Adversarial Network (CVAE-WGAN) architecture, we developed a system to generate high-quality synthetic images conditioned on the class (malignant vs. normal/benign). These synthetic images, generated from the low-resolution BreastMNIST dataset and filtered for quality, were systematically integrated with real training data at different mixing ratios (W). The performance of a CNN classifier trained on these mixed datasets was evaluated against a baseline model trained only on real data balanced with SMOTE. The optimal integration (mixing weight W=0.25) produced a significant performance increase on the real test set: +8.17% in macro-average F1-score and +4.58% in accuracy compared to using real data alone. Analysis confirmed the originality of the generated samples. This approach offers a promising solution for overcoming data limitations in image-based breast cancer diagnostics, potentially improving the capabilities of CAD systems.

Inferring single-cell spatial gene expression with tissue morphology via explainable deep learning

Zhao, Y., Alizadeh, E., Taha, H. B., Liu, Y., Xu, M., Mahoney, J. M., Li, S.

biorxiv logopreprintJun 2 2025
Deep learning models trained with spatial omics data uncover complex patterns and relationships among cells, genes, and proteins in a high-dimensional space. State-of-the-art in silico spatial multi-cell gene expression methods using histological images of tissue stained with hematoxylin and eosin (H&E) allow us to characterize cellular heterogeneity. We developed a vision transformer (ViT) framework to map histological signatures to spatial single-cell transcriptomic signatures, named SPiRiT. SPiRiT predicts single-cell spatial gene expression using the matched H&E image tiles of human breast cancer and whole mouse pup, evaluated by Xenium (10x Genomics) datasets. Importantly, SPiRiT incorporates rigorous strategies to ensure reproducibility and robustness of predictions and provides trustworthy interpretation through attention-based model explainability. SPiRiT model interpretation revealed the areas, and attention details it uses to predict gene expressions like marker genes in invasive cancer cells. In an apple-to-apple comparison with ST-Net, SPiRiT improved the predictive accuracy by 40%. These gene predictions and expression levels were highly consistent with the tumor region annotation. In summary, SPiRiT highlights the feasibility to infer spatial single-cell gene expression using tissue morphology in multiple-species.

Data Augmentation for Medical Image Classification Based on Gaussian Laplacian Pyramid Blending With a Similarity Measure.

Kumar A, Sharma A, Singh AK, Singh SK, Saxena S

pubmed logopapersJun 1 2025
Breast cancer is a devastating disease that affects women worldwide, and computer-aided algorithms have shown potential in automating cancer diagnosis. Recently Generative Artificial Intelligence (GenAI) opens new possibilities for addressing the challenges of labeled data scarcity and accurate prediction in critical applications. However, a lack of diversity, as well as unrealistic and unreliable data, have a detrimental impact on performance. Therefore, this study proposes an augmentation scheme to address the scarcity of labeled data and data imbalance in medical datasets. This approach integrates the concepts of the Gaussian-Laplacian pyramid and pyramid blending with similarity measures. In order to maintain the structural properties of images and capture inter-variability of patient images of the same category similarity-metric-based intermixing has been introduced. It helps to maintain the overall quality and integrity of the dataset. Subsequently, deep learning approach with significant modification, that leverages transfer learning through the usage of concatenated pre-trained models is applied to classify breast cancer histopathological images. The effectiveness of the proposal, including the impact of data augmentation, is demonstrated through a detailed analysis of three different medical datasets, showing significant performance improvement over baseline models. The proposal has the potential to contribute to the development of more accurate and reliable approach for breast cancer diagnosis.

Enhancing radiomics features via a large language model for classifying benign and malignant breast tumors in mammography.

Ra S, Kim J, Na I, Ko ES, Park H

pubmed logopapersJun 1 2025
Radiomics is widely used to assist in clinical decision-making, disease diagnosis, and treatment planning for various target organs, including the breast. Recent advances in large language models (LLMs) have helped enhance radiomics analysis. Herein, we sought to improve radiomics analysis by incorporating LLM-learned clinical knowledge, to classify benign and malignant tumors in breast mammography. We extracted radiomics features from the mammograms based on the region of interest and retained the features related to the target task. Using prompt engineering, we devised an input sequence that reflected the selected features and the target task. The input sequence was fed to the chosen LLM (LLaMA variant), which was fine-tuned using low-rank adaptation to enhance radiomics features. This was then evaluated on two mammogram datasets (VinDr-Mammo and INbreast) against conventional baselines. The enhanced radiomics-based method performed better than baselines using conventional radiomics features tested on two mammogram datasets, achieving accuracies of 0.671 for the VinDr-Mammo dataset and 0.839 for the INbreast dataset. Conventional radiomics models require retraining from scratch for an unseen dataset using a new set of features. In contrast, the model developed in this study effectively reused the common features between the training and unseen datasets by explicitly linking feature names with feature values, leading to extensible learning across datasets. Our method performed better than the baseline method in this retraining setting using an unseen dataset. Our method, one of the first to incorporate LLM into radiomics, has the potential to improve radiomics analysis.

Review and reflections on live AI mammographic screen reading in a large UK NHS breast screening unit.

Puri S, Bagnall M, Erdelyi G

pubmed logopapersJun 1 2025
The Radiology team from a large Breast Screening Unit in the UK with a screening population of over 135,000 took part in a service evaluation project using artificial intelligence (AI) for reading breast screening mammograms. To evaluate the clinical benefit AI may provide when implemented as a silent reader in a double reading breast screening programme and to evaluate feasibility and the operational impact of deploying AI into the breast screening programme. The service was one of 14 breast screening sites in the UK to take part in this project and we present our local experience with AI in breast screening. A commercially available AI platform was deployed and worked in real time as a 'silent third reader' so as not to impact standard workflows and patient care. All cases flagged by AI but not recalled by standard double reading (positive discordant cases) were reviewed along with all cases recalled by human readers but not flagged by AI (negative discordant cases). 9,547 cases were included in the evaluation. 1,135 positive discordant cases were reviewed, and one woman was recalled from the reviews who was not found to have cancer on further assessment in the breast assessment clinic. 139 negative discordant cases were reviewed, and eight cancer cases (8.79% of total cancers detected in this period) recalled by human readers were not detected by AI. No additional cancers were detected by AI during the study. Performance of AI was inferior to human readers in our unit. Having missed a significant number of cancers makes it unreliable and not safe to be used in clinical practice. AI is not currently of sufficient accuracy to be considered in the NHS Breast Screening Programme.

Artificial intelligence-assisted magnetic resonance lymphography for evaluation of micro- and macro-sentinel lymph node metastasis in breast cancer.

Yang Z, Ling J, Sun W, Pan C, Chen T, Dong C, Zhou X, Zhang J, Zheng J, Ma X

pubmed logopapersJun 1 2025
Contrast-enhanced magnetic resonance lymphography (CE-MRL) plays a crucial role in preoperative diagnostic for evaluating tumor metastatic sentinel lymph node (T-SLN), by integrating detailed lymphatic information about lymphatic anatomy and drainage function from MR images. However, the clinical gadolinium-based contrast agents for identifying T-SLN is seriously limited, owing to their small molecular structure and rapid diffusion into the bloodstream. Herein, we propose a novel albumin-modified manganese-based nanoprobes enhanced MRL method for accurately assessing micro- and macro-T-SLN. Specifically, the inherent concentration gradient of albumin between blood and interstitial fluid aids in the movement of nanoprobes into the lymphatic system. The micro-T-SLN exhibits a notably higher MR signal due to the formation of new lymphatic vessels and increased lymphatic flow, allowing for a greater influx of nanoprobes. In contrast, the macro-T-SLN shows a lower MR signal as a result of tumor cell proliferation and damage to the lymphatic vessels. Additionally, a highly accurate and sensitive machine learning model has been developed to guide the identification of micro- and macro-T-SLN by analyzing manganese-enhanced MR images. In conclusion, our research presents a novel comprehensive assessment framework utilizing albumin-modified manganese-based nanoprobes for a highly sensitive evaluation of micro- and macro-T-SLN in breast cancer.

Keeping AI on Track: Regular monitoring of algorithmic updates in mammography.

Taib AG, James JJ, Partridge GJW, Chen Y

pubmed logopapersJun 1 2025
To demonstrate a method of benchmarking the performance of two consecutive software releases of the same commercial artificial intelligence (AI) product to trained human readers using the Personal Performance in Mammographic Screening scheme (PERFORMS) external quality assurance scheme. In this retrospective study, ten PERFORMS test sets, each consisting of 60 challenging cases, were evaluated by human readers between 2012 and 2023 and were evaluated by Version 1 (V1) and Version 2 (V2) of the same AI model in 2022 and 2023 respectively. Both AI and humans considered each breast independently. Both AI and humans considered the highest suspicion of malignancy score per breast for non-malignant cases and per lesion for breasts with malignancy. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated for comparison, with the study powered to detect a medium-sized effect (odds ratio, 3.5 or 0.29) for sensitivity. The study included 1,254 human readers, with a total of 328 malignant lesions, 823 normal, and 55 benign breasts analysed. No significant difference was found between the AUCs for AI V1 (0.93) and V2 (0.94) (p = 0.13). In terms of sensitivity, no difference was observed between human readers and AI V1 (83.2 % vs 87.5 % respectively, p = 0.12), however V2 outperformed humans (88.7 %, p = 0.04). Specificity was higher for AI V1 (87.4 %) and V2 (88.2 %) compared to human readers (79.0 %, p < 0.01 respectively). The upgraded AI model showed no significant difference in diagnostic performance compared to its predecessor when evaluating mammograms from PERFORMS test sets.
Page 22 of 30293 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.