Sort by:
Page 213 of 2352341 results

Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children.

Tsai ML, Hsieh KL, Liu YL, Yang YS, Chang H, Wong TT, Peng SJ

pubmed logopapersMay 19 2025
Understanding the impact of epilepsy on pediatric brain tumors is crucial to diagnostic precision and optimal treatment selection. This study investigated MRI radiomics features, tumor location, voxel-based morphometry (VBM) for gray matter density, and tumor volumetry to differentiate between children with low grade glioma (LGG)-associated epilepsies and those without, and further identified key radiomics features for predicting of epilepsy risk in children with supratentorial LGG to construct an epilepsy prediction model. A total of 206 radiomics features of tumors and voxel-based morphometric analysis of tumor location features were extracted from T2-FLAIR images in a primary cohort of 48 children with LGG with epilepsy (N = 23) or without epilepsy (N = 25), prior to surgery. Feature selection was performed using the minimum redundancy maximum relevance algorithm, and leave-one-out cross-validation was applied to assess the predictive performance of radiomics and tumor location signatures in differentiating epilepsy-associated LGG from non-epilepsy cases. Voxel-based morphometric analysis showed significant positive t-scores within bilateral temporal cortex and negative t-scores in basal ganglia between epilepsy and non-epilepsy groups. Eight radiomics features were identified as significant predictors of epilepsy in LGG, encompassing characteristics of 2 locations, 2 shapes, 1 image gray scale intensity, and 3 textures. The most important predictor was temporal lobe involvement, followed by high dependence high grey level emphasis, elongation, area density, information correlation 1, midbrain and intensity range. The Linear Support Vector Machine (SVM) model yielded the best prediction performance, when implemented with a combination of radiomics features and tumor location features, as evidenced by the following metrics: precision (0.955), recall (0.913), specificity (0.960), accuracy (0.938), F-1 score (0.933), and area under curve (AUC) (0.950). Our findings demonstrated the efficacy of machine learning models based on radiomics features and voxel-based anatomical locations in predicting the risk of epilepsy in supratentorial LGG. This model provides a highly accurate tool for distinguishing epilepsy-associated LGG in children, supporting precise treatment planning. Not applicable.

Diagnosis of early idiopathic pulmonary fibrosis: current status and future perspective.

Wang X, Xia X, Hou Y, Zhang H, Han W, Sun J, Li F

pubmed logopapersMay 19 2025
The standard approach to diagnosing idiopathic pulmonary fibrosis (IPF) includes identifying the usual interstitial pneumonia (UIP) pattern via high resolution computed tomography (HRCT) or lung biopsy and excluding known causes of interstitial lung disease (ILD). However, limitations of manual interpretation of lung imaging, along with other reasons such as lack of relevant knowledge and non-specific symptoms have hindered the timely diagnosis of IPF. This review proposes the definition of early IPF, emphasizes the diagnostic urgency of early IPF, and highlights current diagnostic strategies and future prospects for early IPF. The integration of artificial intelligence (AI), specifically machine learning (ML) and deep learning (DL), is revolutionizing the diagnostic procedure of early IPF by standardizing and accelerating the interpretation of thoracic images. Innovative bronchoscopic techniques such as transbronchial lung cryobiopsy (TBLC), genomic classifier, and endobronchial optical coherence tomography (EB-OCT) provide less invasive diagnostic alternatives. In addition, chest auscultation, serum biomarkers, and susceptibility genes are pivotal for the indication of early diagnosis. Ongoing research is essential for refining diagnostic methods and treatment strategies for early IPF.

Deep learning models based on multiparametric magnetic resonance imaging and clinical parameters for identifying synchronous liver metastases from rectal cancer.

Sun J, Wu PY, Shen F, Chen X, She J, Luo M, Feng F, Zheng D

pubmed logopapersMay 19 2025
To establish and validate deep learning (DL) models based on pre-treatment multiparametric magnetic resonance imaging (MRI) images of primary rectal cancer and basic clinical data for the prediction of synchronous liver metastases (SLM) in patients with Rectal cancer (RC). In this retrospective study, 176 and 31 patients with RC who underwent multiparametric MRI from two centers were enrolled in the primary and external validation cohorts, respectively. Clinical factors, including sex, primary tumor site, CEA level, and CA199 level were assessed. A clinical feature (CF) model was first developed by multivariate logistic regression, then two residual network DL models were constructed based on multiparametric MRI of primary cancer with or without CF incorporation. Finally, the SLM prediction models were validated by 5-fold cross-validation and external validation. The performance of the models was evaluated by decision curve analysis (DCA) and receiver operating characteristic (ROC) analysis. Among three SLM prediction models, the Combined DL model integrating primary tumor MRI and basic clinical data achieved the best performance (AUC = 0.887 in primary study cohort; AUC = 0.876 in the external validation cohort). In the primary study cohort, the CF model, MRI DL model, and Combined DL model achieved AUCs of 0.816 (95% CI: 0.750, 0.881), 0.788 (95% CI: 0.720, 0.857), and 0.887 (95% CI: 0.834, 0.940) respectively. In the external validation cohort, the CF model, DL model without CF, and DL model with CF achieved AUCs of 0.824 (95% CI: 0.664, 0.984), 0.662 (95% CI: 0.461, 0.863), and 0.876 (95% CI: 0.728, 1.000), respectively. The combined DL model demonstrates promising potential to predict SLM in patients with RC, thereby making individualized imaging test strategies. Accurate synchronous liver metastasis (SLM) risk stratification is important for treatment planning and prognosis improvement. The proposed DL signature may be employed to better understand an individual patient's SLM risk, aiding in treatment planning and selection of further imaging examinations to personalize clinical decisions. Not applicable.

Prediction of prognosis of immune checkpoint inhibitors combined with anti-angiogenic agents for unresectable hepatocellular carcinoma by machine learning-based radiomics.

Xu X, Jiang X, Jiang H, Yuan X, Zhao M, Wang Y, Chen G, Li G, Duan Y

pubmed logopapersMay 19 2025
This study aims to develop and validate a novel radiomics model utilizing magnetic resonance imaging (MRI) to predict progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) who are receiving a combination of immune checkpoint inhibitors (ICIs) and antiangiogenic agents. This is an area that has not been previously explored using MRI-based radiomics. 111 patients with uHCC were enrolled in this study. After performing univariate cox regression and the least absolute shrinkage and selection operator (LASSO) algorithms to extract radiological features, the Rad-score was calculated through a Cox proportional hazards regression model and a random survival forest (RSF) model. The optimal calculation method was selected by comparing the Harrell's concordance index (C-index) values. The Rad-score was then combined with independent clinical risk factors to create a nomogram. C-index, time-dependent receiver operating characteristics (ROC) curves, calibration curves, and decision curve analysis were employed to assess the forecast ability of the risk models. The combined nomogram incorporated independent clinical factors and Rad-score calculated by RSF demonstrated better prognosis prediction for PFS, with C-index of 0.846, 0.845, separately in the training and the validation cohorts. This indicates that our model performs well and has the potential to enable more precise patient stratification and personalized treatment strategies. Based on the risk level, the participants were classified into two distinct groups: the high-risk signature (HRS) group and the low-risk signature (LRS) group, with a significant difference between the groups (P < 0.01). The effective clinical-radiomics nomogram based on MRI imaging is a promising tool in predicting the prognosis in uHCC patients receiving ICIs combined with anti-angiogenic agents, potentially leading to more effective clinical outcomes.

Multiple deep learning models based on MRI images in discriminating glioblastoma from solitary brain metastases: a multicentre study.

Kong C, Yan D, Liu K, Yin Y, Ma C

pubmed logopapersMay 19 2025
Development of a deep learning model for accurate preoperative identification of glioblastoma and solitary brain metastases by combining multi-centre and multi-sequence magnetic resonance images and comparison of the performance of different deep learning models. Clinical data and MR images of a total of 236 patients with pathologically confirmed glioblastoma and single brain metastases were retrospectively collected from January 2019 to May 2024 at Provincial Hospital of Shandong First Medical University, and the data were randomly divided into a training set and a test set according to the ratio of 8:2, in which the training set contained 197 cases and the test set contained 39 cases; the images were preprocessed and labeled with the tumor regions. The images were pre-processed and labeled with tumor regions, and different MRI sequences were input individually or in combination to train the deep learning model 3D ResNet-18, and the optimal sequence combinations were obtained by five-fold cross-validation enhancement of the data inputs and training of the deep learning models 3D Vision Transformer (3D Vit), 3D DenseNet, and 3D VGG; the working characteristic curves (ROCs) of subjects were plotted, and the area under the curve (AUC) was calculated. The area under the curve (AUC), accuracy, precision, recall and F1 score were used to evaluate the discriminative performance of the models. In addition, 48 patients with glioblastoma and single brain metastases from January 2020 to December 2022 were collected from the Affiliated Cancer Hospital of Shandong First Medical University as an external test set to compare the discriminative performance, robustness and generalization ability of the four deep learning models. In the comparison of the discriminative effect of different MRI sequences, the three sequence combinations of T1-CE, T2, and T2-Flair gained discriminative effect, with the accuracy and AUC values of 0.8718 and 0.9305, respectively; after the four deep learning models were inputted into the aforementioned sequence combinations, the accuracy and AUC of the external validation of the 3D ResNet-18 model were 0.8125, respectively, 0.8899, all of which are the highest among all models. A combination of multi-sequence MR images and a deep learning model can efficiently identify glioblastoma and solitary brain metastases preoperatively, and the deep learning model 3D ResNet-18 has the highest efficacy in identifying the two types of tumours.

Preoperative DBT-based radiomics for predicting axillary lymph node metastasis in breast cancer: a multi-center study.

He S, Deng B, Chen J, Li J, Wang X, Li G, Long S, Wan J, Zhang Y

pubmed logopapersMay 19 2025
In the prognosis of breast cancer, the status of axillary lymph nodes (ALN) is critically important. While traditional axillary lymph node dissection (ALND) provides comprehensive information, it is associated with high risks. Sentinel lymph node biopsy (SLND), as an alternative, is less invasive but still poses a risk of overtreatment. In recent years, digital breast tomosynthesis (DBT) technology has emerged as a new precise diagnostic tool for breast cancer, leveraging its high detection capability for lesions obscured by dense glandular tissue. This multi-center study evaluates the feasibility of preoperative DBT-based radiomics, using tumor and peritumoral features, to predict ALN metastasis in breast cancer. We retrospectively collected DBT imaging data from 536 preoperative breast cancer patients across two centers. Specifically, 390 cases were from one Hospital, and 146 cases were from another Hospital. These data were assigned to internal training and external validation sets, respectively. We performed 3D region of interest (ROI) delineation on the cranio-caudal (CC) and mediolateral oblique (MLO) views of DBT images and extracted radiomic features. Using methods such as analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), we selected radiomic features extracted from the tumor and its surrounding 3 mm, 5 mm, and 10 mm regions, and constructed a radiomic feature set. We then developed a combined model that includes the optimal radiomic features and clinical pathological factors. The performance of the combined model was evaluated using the area under the curve (AUC), and it was directly compared with the diagnostic results of radiologists. The results showed that the AUC of the radiomic features from the surrounding regions of the tumor were generally lower than those from the tumor itself. Among them, the Signature<sub>tuomor+10 mm</sub> model performed best, achieving an AUC of 0.806 using a logistic regression (LR) classifier to generate the RadScore.The nomogram incorporating both Ki67 and RadScore demonstrated a slightly higher AUC (0.813) compared to the Signature<sub>tuomor+10 mm</sub> model alone (0.806). By integrating relevant clinical information, the nomogram enhances potential clinical utility. Moreover, it outperformed radiologists' assessments in predictive accuracy, highlighting its added value in clinical decision-making. Radiomics based on DBT imaging of the tumor and surrounding regions can provide a non-invasive auxiliary tool to guide treatment strategies for ALN metastasis in breast cancer. Not applicable.

Development and validation of ultrasound-based radiomics deep learning model to identify bone erosion in rheumatoid arthritis.

Yan L, Xu J, Ye X, Lin M, Gong Y, Fang Y, Chen S

pubmed logopapersMay 19 2025
To develop and validate a deep learning radiomics fusion model (DLR) based on ultrasound (US) images to identify bone erosion in rheumatoid arthritis (RA) patients. A total of 432 patients with RA at two institutions were collected. Three hundred twelve patients from center 1 were randomly divided into a training set (N = 218) and an internal test set (N = 94) in a 7:3 ratio; meanwhile, 124 patients from center 2 were as an external test set. Radiomics (Rad) and deep learning (DL) features were extracted based on hand-crafted radiomics and deep transfer learning networks. The least absolute shrinkage and selection operator regression was employed to establish DLR fusion feature from the Rad and DL features. Subsequently, 10 machine learning algorithms were used to construct models and the final optimal model was selected. The performance of models was evaluated using receiver operating characteristic (ROC) and decision curve analysis (DCA). The diagnostic efficacy of sonographers was compared with and without the assistance of the optimal model. LR was chosen as the optimal algorithm for model construction account for superior performance (Rad/DL/DLR: area under the curve [AUC] = 0.906/0.974/0.979) in the training set. In the internal test set, DLR_LR as the final model had the highest AUC (AUC = 0.966), which was also validated in the external test set (AUC = 0.932). With the aid of DLR_LR model, the overall performance of both junior and senior sonographers improved significantly (P < 0.05), and there was no significant difference between the junior sonographer with DLR_LR model assistance and the senior sonographer without assistance (P > 0.05). DLR model based on US images is the best performer and is expected to become an important tool for identifying bone erosion in RA patients. Key Points • DLR model based on US images is the best performer in identifying BE in RA patients. • DLR model may assist the sonographers to improve the accuracy of BE evaluations.

Non-invasive CT based multiregional radiomics for predicting pathologic complete response to preoperative neoadjuvant chemoimmunotherapy in non-small cell lung cancer.

Fan S, Xie J, Zheng S, Wang J, Zhang B, Zhang Z, Wang S, Cui Y, Liu J, Zheng X, Ye Z, Cui X, Yue D

pubmed logopapersMay 19 2025
This study aims to develop and validate a multiregional radiomics model to predict pathological complete response (pCR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC), and further evaluate the performance of the model in different specific subgroups (N2 stage and anti-PD-1/PD-L1). 216 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy followed by surgical intervention were included and assigned to training and validation sets randomly. From pre-treatment baseline CT, one intratumoral (T) and two peritumoral regions (P<sub>3</sub>: 0-3 mm; P<sub>6</sub>: 0-6 mm) were extracted. Five radiomics models were developed using machine learning algorithms to predict pCR, utilizing selected features from intratumoral (T), peritumoral (P<sub>3</sub>, P<sub>6</sub>), and combined intra- and peritumoral regions (T + P<sub>3</sub>, T + P<sub>6</sub>). Additionally, the predictive efficacy of the optimal model was specifically assessed for patients in the N2 stage and anti-PD-1/PD-L1 subgroups. A total of 51.4 % (111/216) of patients exhibited pCR following neoadjuvant chemoimmunotherapy. Multivariable analysis identified that only the T + P<sub>3</sub> radiomics signature served as independent predictor of pCR (P < 0.001). The multiregional radiomics model (T + P<sub>3</sub>) exhibited superior predictive performance for pCR, achieving an area under the curve (AUC) of 0.75 in the validation cohort. Furthermore, this multiregional model maintained robust predictive accuracy in both N2 stage and anti-PD-1/PD-L1 subgroups, with an AUC of 0.829 and 0.833, respectively. The proposed multiregional radiomics model showed potential in predicting pCR in NSCLC after neoadjuvant chemoimmunotherapy, and demonstrated good predictive performance in different specific subgroups. This capability may assist clinicians in identifying suitable candidates for neoadjuvant chemoimmunotherapy and promote the advancement in precision therapy.

Improving Deep Learning-Based Grading of Partial-thickness Supraspinatus Tendon Tears with Guided Diffusion Augmentation.

Ni M, Jiesisibieke D, Zhao Y, Wang Q, Gao L, Tian C, Yuan H

pubmed logopapersMay 19 2025
To develop and validate a deep learning system with guided diffusion-based data augmentation for grading partial-thickness supraspinatus tendon (SST) tears and to compare its performance with experienced radiologists, including external validation. This retrospective study included 1150 patients with arthroscopically confirmed SST tears, divided into a training set (741 patients), validation set (185 patients), and internal test set (185 patients). An independent external test set of 224 patients was used for generalizability assessment. To address data imbalance, MRI images were augmented using a guided diffusion model. A ResNet-34 model was employed for Ellman grading of bursal-sided and articular-sided partial-thickness tears across different MRI sequences (oblique coronal [OCOR], oblique sagittal [OSAG], and combined OCOR+OSAG). Performance was evaluated using AUC and precision-recall curves, and compared to three experienced musculoskeletal (MSK) radiologists. The DeLong test was used to compare performance across different sequence combinations. A total of 26,020 OCOR images and 26,356 OSAG images were generated using the guided diffusion model. For bursal-sided partial-thickness tears in the internal dataset, the model achieved AUCs of 0.99, 0.98, and 0.97 for OCOR, OSAG, and combined sequences, respectively, while for articular-sided tears, AUCs were 0.99, 0.99, and 0.99. The DeLong test showed no significant differences among sequence combinations (P=0.17, 0.14, 0.07). In the external dataset, the combined-sequence model achieved AUCs of 0.99, 0.97, and 0.97 for bursal-sided tears and 0.99, 0.95, and 0.95 for articular-sided tears. Radiologists demonstrated an ICC of 0.99, but their grading performance was significantly lower than the ResNet-34 model (P<0.001). The deep learning system improved grading consistency and significantly reduced evaluation time, while guided diffusion augmentation enhanced model robustness. The proposed deep learning system provides a reliable and efficient method for grading partial-thickness SST tears, achieving radiologist-level accuracy with greater consistency and faster evaluation speed.

Accuracy of segment anything model for classification of vascular stenosis in digital subtraction angiography.

Navasardyan V, Katz M, Goertz L, Zohranyan V, Navasardyan H, Shahzadi I, Kröger JR, Borggrefe J

pubmed logopapersMay 19 2025
This retrospective study evaluates the diagnostic performance of an optimized comprehensive multi-stage framework based on the Segment Anything Model (SAM), which we named Dr-SAM, for detecting and grading vascular stenosis in the abdominal aorta and iliac arteries using digital subtraction angiography (DSA). A total of 100 DSA examinations were conducted on 100 patients. The infrarenal abdominal aorta (AAI), common iliac arteries (CIA), and external iliac arteries (EIA) were independently evaluated by two experienced radiologists using a standardized 5-point grading scale. Dr-SAM analyzed the same DSA images, and its assessments were compared with the average stenosis grading provided by the radiologists. Diagnostic accuracy was evaluated using Cohen's kappa, specificity, sensitivity, and Wilcoxon signed-rank tests. Interobserver agreement between radiologists, which established the reference standard, was strong (Cohen's kappa: CIA right = 0.95, CIA left = 0.94, EIA right = 0.98, EIA left = 0.98, AAI = 0.79). Dr-SAM showed high agreement with radiologist consensus for CIA (κ = 0.93 right, 0.91 left), moderate agreement for EIA (κ = 0.79 right, 0.76 left), and fair agreement for AAI (κ = 0.70). Dr-SAM demonstrated excellent specificity (up to 1.0) and robust sensitivity (0.67-0.83). Wilcoxon tests revealed no significant differences between Dr-SAM and radiologist grading (p > 0.05). Dr-SAM proved to be an accurate and efficient tool for vascular assessment, with the potential to streamline diagnostic workflows and reduce variability in stenosis grading. Its ability to deliver rapid and consistent evaluations may contribute to earlier detection of disease and the optimization of treatment strategies. Further studies are needed to confirm these findings in prospective settings and to enhance its capabilities, particularly in the detection of occlusions.
Page 213 of 2352341 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.