Sort by:
Page 211 of 2352341 results

Feasibility of an AI-driven Classification of Tuberous Breast Deformity: A Siamese Network Approach with a Continuous Tuberosity Score.

Vaccari S, Paderno A, Furlan S, Cavallero MF, Lupacchini AM, Di Giuli R, Klinger M, Klinger F, Vinci V

pubmed logopapersMay 20 2025
Tuberous breast deformity (TBD) is a congenital condition characterized by constriction of the breast base, parenchymal hypoplasia, and areolar herniation. The absence of a universally accepted classification system complicates diagnosis and surgical planning, leading to variability in clinical outcomes. Artificial intelligence (AI) has emerged as a powerful adjunct in medical imaging, enabling objective, reproducible, and data-driven diagnostic assessments. This study introduces an AI-driven diagnostic tool for tuberous breast deformity (TBD) classification using a Siamese Network trained on paired frontal and lateral images. Additionally, the model generates a continuous Tuberosity Score (ranging from 0 to 1) based on embedding vector distances, offering an objective measure to enhance surgical planning and improved clinical outcomes. A dataset of 200 expertly classified frontal and lateral breast images (100 tuberous, 100 non-tuberous) was used to train a Siamese Network with contrastive loss. The model extracted high-dimensional feature embeddings to differentiate tuberous from non-tuberous breasts. Five-fold cross-validation ensured robust performance evaluation. Performance metrics included accuracy, precision, recall, and F1-score. Visualization techniques, such as t-SNE clustering and occlusion sensitivity mapping, were employed to interpret model decisions. The model achieved an average accuracy of 96.2% ± 5.5%, with balanced precision and recall. The Tuberosity Score, derived from the Euclidean distance between embeddings, provided a continuous measure of deformity severity, correlating well with clinical assessments. This AI-based framework offers an objective, high-accuracy classification system for TBD. The Tuberosity Score enhances diagnostic precision, potentially aiding in surgical planning and improving patient outcomes.

Non-Invasive Tumor Budding Evaluation and Correlation with Treatment Response in Bladder Cancer: A Multi-Center Cohort Study.

Li X, Zou C, Wang C, Chang C, Lin Y, Liang S, Zheng H, Liu L, Deng K, Zhang L, Liu B, Gao M, Cai P, Lao J, Xu L, Wu D, Zhao X, Wu X, Li X, Luo Y, Zhong W, Lin T

pubmed logopapersMay 20 2025
The clinical benefits of neoadjuvant chemoimmunotherapy (NACI) are demonstrated in patients with bladder cancer (BCa); however, more than half fail to achieve a pathological complete response (pCR). This study utilizes multi-center cohorts of 2322 patients with pathologically diagnosed BCa, collected between January 1, 2014, and December 31, 2023, to explore the correlation between tumor budding (TB) status and NACI response and disease prognosis. A deep learning model is developed to noninvasively evaluate TB status based on CT images. The deep learning model accurately predicts the TB status, with area under the curve values of 0.932 (95% confidence interval: 0.898-0.965) in the training cohort, 0.944 (0.897-0.991) in the internal validation cohort, 0.882 (0.832-0.933) in external validation cohort 1, 0.944 (0.908-0.981) in the external validation cohort 2, and 0.854 (0.739-0.970) in the NACI validation cohort. Patients predicted to have a high TB status exhibit a worse prognosis (p < 0.05) and a lower pCR rate of 25.9% (7/20) than those predicted to have a low TB status (pCR rate: 73.9% [17/23]; p < 0.001). Hence, this model may be a reliable, noninvasive tool for predicting TB status, aiding clinicians in prognosis assessment and NACI strategy formulation.

Fusing radiomics and deep learning features for automated classification of multi-type pulmonary nodule.

Du L, Tang G, Che Y, Ling S, Chen X, Pan X

pubmed logopapersMay 20 2025
The accurate classification of lung nodules is critical to achieving personalized lung cancer treatment and prognosis prediction. The treatment options for lung cancer and the prognosis of patients are closely related to the type of lung nodules, but there are many types of lung nodules, and the distinctions between certain types are subtle, making accurate classification based on traditional medical imaging technology and doctor experience challenging. In this study, a novel method was used to analyze quantitative features in CT images using CT radiomics to reveal the characteristics of pulmonary nodules, and then feature fusion was used to integrate radiomics features and deep learning features to improve the accuracy of classification. This paper proposes a fusion feature pulmonary nodule classification method that fuses radiomics features with deep learning neural network features, aiming to automatically classify different types of pulmonary nodules (such as Malignancy, Calcification, Spiculation, Lobulation, Margin, and Texture). By introducing the Discriminant Correlation Analysis feature fusion algorithm, the method maximizes the complementarity between the two types of features and the differences between different classes. This ensures interaction between the information, effectively utilizing the complementary characteristics of the features. The LIDC-IDRI dataset is used for training, and the fusion feature model has been validated for its advantages and effectiveness in classifying multiple types of pulmonary nodules. The experimental results show that the fusion feature model outperforms the single-feature model in all classification tasks. The AUCs for the tasks of classifying Calcification, Lobulation, Margin, Spiculation, Texture, and Malignancy reached 0.9663, 0.8113, 0.8815, 0.8140, 0.9010, and 0.9316, respectively. In tasks such as nodule calcification and texture classification, the fusion feature model significantly improved the recognition ability of minority classes. The fusion of radiomics features and deep learning neural network features can effectively enhance the overall performance of pulmonary nodule classification models while also improving the recognition of minority classes when there is a significant class imbalance.

A 3D deep learning model based on MRI for predicting lymphovascular invasion in rectal cancer.

Wang T, Chen C, Liu C, Li S, Wang P, Yin D, Liu Y

pubmed logopapersMay 20 2025
The assessment of lymphovascular invasion (LVI) is crucial in the management of rectal cancer; However, accurately evaluating LVI preoperatively using imaging remains challenging. Recent advances in radiomics have created opportunities for developing more accurate diagnostic tools. This study aimed to develop and validate a deep learning model for predicting LVI in rectal cancer patients using preoperative MR imaging. These cases were randomly divided into a training cohort (n = 233) and an validation cohort (n = 101) at a ratio of 7:3. Based on the pathological reports, the patients were classified into positive and negative groups according to their LVI status. Based on the preoperative MRI T2WI axial images, the regions of interest (ROI) were defined from the tumor itself and the edges of the tumor extending outward by 5 pixels, 10 pixels, 15 pixels, and 20 pixels. The 2D and 3D deep learning features were extracted using the DenseNet121 architecture, and the deep learning models were constructed, including a total of ten models: GTV (the tumor itself), GPTV5 (the tumor itself and the tumor extending outward by 5 pixels), GPTV10, GPTV15, and GPTV20. To assess model performance, we utilized the area under the curve (AUC) and conducted DeLong test to compare different models, aiming to identify the optimal model for predicting LVI in rectal cancer. In the 2D deep learning model group, the 2D GPTV10 model demonstrated superior performance with an AUC of 0.891 (95% confidence interval [CI] 0.850-0.933) in the training cohort and an AUC of 0.841 (95% CI 0.767-0.915) in the validation cohort. The difference in AUC between this model and other 2D models was not statistically significant based on DeLong test (p > 0.05); In the group of 3D deep learning models, the 3D GPTV10 model had the highest AUC, with a training cohort AUC of 0.961 (95% CI 0.940-0.982) and a validation cohort AUC of 0.928 (95% CI 0.881-0.976). DeLong test demonstrated that the performance of the 3D GPTV10 model surpassed other 3D models as well as the 2D GPTV10 model (p < 0.05). The study developed a deep learning model, namely 3D GPTV10, utilizing preoperative MRI data to accurately predict the presence of LVI in rectal cancer patients. By training on the tumor itself and its surrounding margin 10 pixels as the region of interest, this model achieved superior performance compared to other deep learning models. These findings have significant implications for clinicians in formulating personalized treatment plans for rectal cancer patients.

XDementNET: An Explainable Attention Based Deep Convolutional Network to Detect Alzheimer Progression from MRI data

Soyabul Islam Lincoln, Mirza Mohd Shahriar Maswood

arxiv logopreprintMay 20 2025
A common neurodegenerative disease, Alzheimer's disease requires a precise diagnosis and efficient treatment, particularly in light of escalating healthcare expenses and the expanding use of artificial intelligence in medical diagnostics. Many recent studies shows that the combination of brain Magnetic Resonance Imaging (MRI) and deep neural networks have achieved promising results for diagnosing AD. Using deep convolutional neural networks, this paper introduces a novel deep learning architecture that incorporates multiresidual blocks, specialized spatial attention blocks, grouped query attention, and multi-head attention. The study assessed the model's performance on four publicly accessible datasets and concentrated on identifying binary and multiclass issues across various categories. This paper also takes into account of the explainability of AD's progression and compared with state-of-the-art methods namely Gradient Class Activation Mapping (GradCAM), Score-CAM, Faster Score-CAM, and XGRADCAM. Our methodology consistently outperforms current approaches, achieving 99.66\% accuracy in 4-class classification, 99.63\% in 3-class classification, and 100\% in binary classification using Kaggle datasets. For Open Access Series of Imaging Studies (OASIS) datasets the accuracies are 99.92\%, 99.90\%, and 99.95\% respectively. The Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) dataset was used for experiments in three planes (axial, sagittal, and coronal) and a combination of all planes. The study achieved accuracies of 99.08\% for axis, 99.85\% for sagittal, 99.5\% for coronal, and 99.17\% for all axis, and 97.79\% and 8.60\% respectively for ADNI-2. The network's ability to retrieve important information from MRI images is demonstrated by its excellent accuracy in categorizing AD stages.

Automated Fetal Biometry Assessment with Deep Ensembles using Sparse-Sampling of 2D Intrapartum Ultrasound Images

Jayroop Ramesh, Valentin Bacher, Mark C. Eid, Hoda Kalabizadeh, Christian Rupprecht, Ana IL Namburete, Pak-Hei Yeung, Madeleine K. Wyburd, Nicola K. Dinsdale

arxiv logopreprintMay 20 2025
The International Society of Ultrasound advocates Intrapartum Ultrasound (US) Imaging in Obstetrics and Gynecology (ISUOG) to monitor labour progression through changes in fetal head position. Two reliable ultrasound-derived parameters that are used to predict outcomes of instrumental vaginal delivery are the angle of progression (AoP) and head-symphysis distance (HSD). In this work, as part of the Intrapartum Ultrasounds Grand Challenge (IUGC) 2024, we propose an automated fetal biometry measurement pipeline to reduce intra- and inter-observer variability and improve measurement reliability. Our pipeline consists of three key tasks: (i) classification of standard planes (SP) from US videos, (ii) segmentation of fetal head and pubic symphysis from the detected SPs, and (iii) computation of the AoP and HSD from the segmented regions. We perform sparse sampling to mitigate class imbalances and reduce spurious correlations in task (i), and utilize ensemble-based deep learning methods for task (i) and (ii) to enhance generalizability under different US acquisition settings. Finally, to promote robustness in task iii) with respect to the structural fidelity of measurements, we retain the largest connected components and apply ellipse fitting to the segmentations. Our solution achieved ACC: 0.9452, F1: 0.9225, AUC: 0.983, MCC: 0.8361, DSC: 0.918, HD: 19.73, ASD: 5.71, $\Delta_{AoP}$: 8.90 and $\Delta_{HSD}$: 14.35 across an unseen hold-out set of 4 patients and 224 US frames. The results from the proposed automated pipeline can improve the understanding of labour arrest causes and guide the development of clinical risk stratification tools for efficient and effective prenatal care.

Advanced feature fusion of radiomics and deep learning for accurate detection of wrist fractures on X-ray images.

Saadh MJ, Hussain QM, Albadr RJ, Doshi H, Rekha MM, Kundlas M, Pal A, Rizaev J, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA, Farhood B

pubmed logopapersMay 20 2025
The aim of this study was to develop a hybrid diagnostic framework integrating radiomic and deep features for accurate and reproducible detection and classification of wrist fractures using X-ray images. A total of 3,537 X-ray images, including 1,871 fracture and 1,666 non-fracture cases, were collected from three healthcare centers. Radiomic features were extracted using the PyRadiomics library, and deep features were derived from the bottleneck layer of an autoencoder. Both feature modalities underwent reliability assessment via Intraclass Correlation Coefficient (ICC) and cosine similarity. Feature selection methods, including ANOVA, Mutual Information (MI), Principal Component Analysis (PCA), and Recursive Feature Elimination (RFE), were applied to optimize the feature set. Classifiers such as XGBoost, CatBoost, Random Forest, and a Voting Classifier were used to evaluate diagnostic performance. The dataset was divided into training (70%) and testing (30%) sets, and metrics such as accuracy, sensitivity, and AUC-ROC were used for evaluation. The combined radiomic and deep feature approach consistently outperformed standalone methods. The Voting Classifier paired with MI achieved the highest performance, with a test accuracy of 95%, sensitivity of 94%, and AUC-ROC of 96%. The end-to-end model achieved competitive results with an accuracy of 93% and AUC-ROC of 94%. SHAP analysis and t-SNE visualizations confirmed the interpretability and robustness of the selected features. This hybrid framework demonstrates the potential for integrating radiomic and deep features to enhance diagnostic performance for wrist and forearm fractures, providing a reliable and interpretable solution suitable for clinical applications.

Mask of Truth: Model Sensitivity to Unexpected Regions of Medical Images.

Sourget T, Hestbek-Møller M, Jiménez-Sánchez A, Junchi Xu J, Cheplygina V

pubmed logopapersMay 20 2025
The development of larger models for medical image analysis has led to increased performance. However, it also affected our ability to explain and validate model decisions. Models can use non-relevant parts of images, also called spurious correlations or shortcuts, to obtain high performance on benchmark datasets but fail in real-world scenarios. In this work, we challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images while masking out clinically relevant parts of the image. We show that all models trained on the PadChest dataset, irrespective of the masking strategy, are able to obtain an area under the curve (AUC) above random. Moreover, the models trained on full images obtain good performance on images without the region of interest (ROI), even superior to the one obtained on images only containing the ROI. We also reveal a possible spurious correlation in the Chákṣu dataset while the performances are more aligned with the expectation of an unbiased model. We go beyond the performance analysis with the usage of the explainability method SHAP and the analysis of embeddings. We asked a radiology resident to interpret chest X-rays under different masking to complement our findings with clinical knowledge.

An explainable AI-driven deep neural network for accurate breast cancer detection from histopathological and ultrasound images.

Alom MR, Farid FA, Rahaman MA, Rahman A, Debnath T, Miah ASM, Mansor S

pubmed logopapersMay 20 2025
Breast cancer represents a significant global health challenge, which makes it essential to detect breast cancer early and accurately to improve patient prognosis and reduce mortality rates. However, traditional diagnostic processes relying on manual analysis of medical images are inherently complex and subject to variability between observers, highlighting the urgent need for robust automated breast cancer detection systems. While deep learning has demonstrated potential, many current models struggle with limited accuracy and lack of interpretability. This research introduces the Deep Neural Breast Cancer Detection (DNBCD) model, an explainable AI-based framework that utilizes deep learning methods for classifying breast cancer using histopathological and ultrasound images. The proposed model employs Densenet121 as a foundation, integrating customized Convolutional Neural Network (CNN) layers including GlobalAveragePooling2D, Dense, and Dropout layers along with transfer learning to achieve both high accuracy and interpretability for breast cancer diagnosis. The proposed DNBCD model integrates several preprocessing techniques, including image normalization and resizing, and augmentation techniques to enhance the model's robustness and address class imbalances using class weight. It employs Grad-CAM (Gradient-weighted Class Activation Mapping) to offer visual justifications for its predictions, increasing trust and transparency among healthcare providers. The model was assessed using two benchmark datasets: Breakhis-400x (B-400x) and Breast Ultrasound Images Dataset (BUSI) containing 1820 and 1578 images, respectively. We systematically divided the datasets into training (70%), testing (20%,) and validation (10%) sets, ensuring efficient model training and evaluation obtaining accuracies of 93.97% for B-400x dataset having benign and malignant classes and 89.87% for BUSI dataset having benign, malignant, and normal classes for breast cancer detection. Experimental results demonstrate that the proposed DNBCD model significantly outperforms existing state-of-the-art approaches with potential uses in clinical environments. We also made all the materials publicly accessible for the research community at: https://github.com/romzanalom/XAI-Based-Deep-Neural-Breast-Cancer-Detection .

Enhancing pathological myopia diagnosis: a bimodal artificial intelligence approach integrating fundus and optical coherence tomography imaging for precise atrophy, traction and neovascularisation grading.

Xu Z, Yang Y, Chen H, Han R, Han X, Zhao J, Yu W, Yang Z, Chen Y

pubmed logopapersMay 20 2025
Pathological myopia (PM) has emerged as a leading cause of global visual impairment, early detection and precise grading of PM are crucial for timely intervention. The atrophy, traction and neovascularisation (ATN) system is applied to define PM progression and stages with precision. This study focuses on constructing a comprehensive PM image dataset comprising both fundus and optical coherence tomography (OCT) images and developing a bimodal artificial intelligence (AI) classification model for ATN grading in PM. This single-centre retrospective cross-sectional study collected 2760 colour fundus photographs and matching OCT images of PM from January 2019 to November 2022 at Peking Union Medical College Hospital. Ophthalmology specialists labelled and inspected all paired images using the ATN grading system. The AI model used a ResNet-50 backbone and a multimodal multi-instance learning module to enhance interaction across instances from both modalities. Performance comparisons among single-modality fundus, OCT and bimodal AI models were conducted for ATN grading in PM. The bimodality model, dual-deep learning (DL), demonstrated superior accuracy in both detailed multiclassification and biclassification of PM, which aligns well with our observation from instance attention-weight activation maps. The area under the curve for severe PM using dual-DL was 0.9635 (95% CI 0.9380 to 0.9890), compared with 0.9359 (95% CI 0.9027 to 0.9691) for the solely OCT model and 0.9268 (95% CI 0.8915 to 0.9621) for the fundus model. Our novel bimodal AI multiclassification model for PM ATN staging proves accurate and beneficial for public health screening and prompt referral of PM patients.
Page 211 of 2352341 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.