Sort by:
Page 20 of 3433422 results

A multidimensional deep ensemble learning model predicts pathological response and outcomes in esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy from pretreatment CT imaging: A multicenter study.

Liu Y, Su Y, Peng J, Zhang W, Zhao F, Li Y, Song X, Ma Z, Zhang W, Ji J, Chen Y, Men Y, Ye F, Men K, Qin J, Liu W, Wang X, Bi N, Xue L, Yu W, Wang Q, Zhou M, Hui Z

pubmed logopapersSep 10 2025
Neoadjuvant chemoradiotherapy (nCRT) followed by esophagectomy remains standard for locally advanced esophageal squamous cell carcinoma (ESCC). However, accurately predicting pathological complete response (pCR) and treatment outcomes remains challenging. This study aimed to develop and validate a multidimensional deep ensemble learning model (DELRN) using pretreatment CT imaging to predict pCR and stratify prognostic risk in ESCC patients undergoing nCRT. In this multicenter, retrospective cohort study, 485 ESCC patients were enrolled from four hospitals (May 2009-August 2023, December 2017-September 2021, May 2014-September 2019, and March 2013-July 2019). Patients were divided into a discovery cohort (n = 194), an internal cohort (n = 49), and three external validation cohorts (n = 242). A multidimensional deep ensemble learning model (DELRN) integrating radiomics and 3D convolutional neural networks was developed based on pretreatment CT images to predict pCR and clinical outcomes. The model's performance was evaluated by discrimination, calibration, and clinical utility. Kaplan-Meier analysis assessed overall survival (OS) and disease-free survival (DFS) at two follow-up centers. The DELRN model demonstrated robust predictive performance for pCR across the discovery, internal, and external validation cohorts, with area under the curve (AUC) values of 0.943 (95 % CI: 0.912-0.973), 0.796 (95 % CI: 0.661-0.930), 0.767 (95 % CI: 0.646-0.887), 0.829 (95 % CI: 0.715-0.942), and 0.782 (95 % CI: 0.664-0.900), respectively, surpassing single-domain radiomics or deep learning models. DELRN effectively stratified patients into high-risk and low-risk groups for OS (log-rank P = 0.018 and 0.0053) and DFS (log-rank P = 0.00042 and 0.035). Multivariate analysis confirmed DELRN as an independent prognostic factor for OS and DFS. The DELRN model demonstrated promising clinical potential as an effective, non-invasive tool for predicting nCRT response and treatment outcome in ESCC patients, enabling personalized treatment strategies and improving clinical decision-making with future prospective multicenter validation.

Integrating Perfusion with AI-derived Coronary Calcium on CT attenuation scans to improve selection of low-risk studies for stress-only SPECT MPI.

Miller RJH, Barrett O, Shanbhag A, Rozanski A, Dey D, Lemley M, Van Kriekinge SD, Kavanagh PB, Feher A, Miller EJ, Einstein AJ, Ruddy TD, Bateman T, Kaufmann PA, Liang JX, Berman DS, Slomka PJ

pubmed logopapersSep 10 2025
In many contemporary laboratories a completely normal stress perfusion SPECT-MPI is required for rest imaging cancelation. We hypothesized that an artificial intelligence (AI)-derived CAC score of 0 from computed tomography attenuation correction (CTAC) scans obtained during hybrid SPECT/CT, may identify additional patients at low risk of MACE who could be selected for stress-only imaging. Patients without known coronary artery disease who underwent SPECT/CT MPI and had stress total perfusion deficit (TPD) <5% were included. Stress TPD was categorized as no abnormality (stress TPD 0%) or minimal abnormality (stress TPD 1-4%). CAC was automatically quantified from the CTAC scans. We evaluated associations with major adverse cardiovascular events (MACE). In total, 6,884 patients (49.4% males and median age 63 years) were included. Of these, 9.7% experienced MACE (15% non-fatal MI, 2.7% unstable angina, 38.5% coronary revascularization and 43.8% deaths). Compared to patients with TPD 0%, those with TPD 1-4% and CAC 0 had lower MACE risk (hazard ratio [HR] 0.58; 95% confidence interval [CI] 0.45-0.76), while those with TPD 1-4% and CAC score>0 had a higher MACE risk (HR 1.90; 95%CI 1.56-2.30). Compared to canceling rest scans only in patients with normal perfusion (TPD 0%), by canceling rest scans in patients with CAC 0, more than twice as many rest scans (55% vs 25%) could be cancelled. Using AI-derived CAC 0 on CT scans with hybrid SPECT/CT in patients with a stress TPD<5% can double the proportion of patients in whom stress-only procedures could be safely performed.

WarpPINN-fibers: improved cardiac strain estimation from cine-MR with physics-informed neural networks

Felipe Álvarez Barrientos, Tomás Banduc, Isabeau Sirven, Francisco Sahli Costabal

arxiv logopreprintSep 10 2025
The contractile motion of the heart is strongly determined by the distribution of the fibers that constitute cardiac tissue. Strain analysis informed with the orientation of fibers allows to describe several pathologies that are typically associated with impaired mechanics of the myocardium, such as cardiovascular disease. Several methods have been developed to estimate strain-derived metrics from traditional imaging techniques. However, the physical models underlying these methods do not include fiber mechanics, restricting their capacity to accurately explain cardiac function. In this work, we introduce WarpPINN-fibers, a physics-informed neural network framework to accurately obtain cardiac motion and strains enhanced by fiber information. We train our neural network to satisfy a hyper-elastic model and promote fiber contraction with the goal to predict the deformation field of the heart from cine magnetic resonance images. For this purpose, we build a loss function composed of three terms: a data-similarity loss between the reference and the warped template images, a regularizer enforcing near-incompressibility of cardiac tissue and a fiber-stretch penalization that controls strain in the direction of synthetically produced fibers. We show that our neural network improves the former WarpPINN model and effectively controls fiber stretch in a synthetic phantom experiment. Then, we demonstrate that WarpPINN-fibers outperforms alternative methodologies in landmark-tracking and strain curve prediction for a cine-MRI benchmark with a cohort of 15 healthy volunteers. We expect that our method will enable a more precise quantification of cardiac strains through accurate deformation fields that are consistent with fiber physiology, without requiring imaging techniques more sophisticated than MRI.

Diffusion MRI of the prenatal fetal brain: a methodological scoping review.

Di Stefano M, Ciceri T, Leemans A, de Zwarte SMC, De Luca A, Peruzzo D

pubmed logopapersSep 10 2025
Fetal diffusion-weighted magnetic resonance imaging (dMRI) represents a promising modality for the assessment of white matter fiber organization, microstructure and development during pregnancy. Over the past two decades, research using this technology has significantly increased, but no consensus has yet been established on how to best implement and standardize the use of fetal dMRI across clinical and research settings. This scoping review aims to synthesize the various methodological approaches for the analysis of fetal dMRI brain data and their applications. We identified a total of 54 relevant articles and analyzed them across five primary domains: (1) datasets, (2) acquisition protocols, (3) image preprocessing/denoising, (4) image processing/modeling, and (5) brain atlas construction. The review of these articles reveals a predominant reliance on Diffusion Tensor Imaging (DTI) (n=37) to study fiber properties, and deterministic tractography approaches to investigate fiber organization (n=23). However, there is an emerging trend towards the adoption of more advanced techniques that address the inherent limitations of fetal dMRI (e.g. maternal and fetal motion, intensity artifacts, fetus's fast and uneven development), particularly through the application of artificial intelligence-based approaches (n=8). In our view, the results suggest that the potential of fetal brain dMRI is hindered by the methodological heterogeneity of the proposed solutions and the lack of publicly available data and tools. Nevertheless, clinical applications demonstrate its utility in studying brain development in both healthy and pathological conditions.

Live(r) Die: Predicting Survival in Colorectal Liver Metastasis

Muhammad Alberb, Helen Cheung, Anne Martel

arxiv logopreprintSep 10 2025
Colorectal cancer frequently metastasizes to the liver, significantly reducing long-term survival. While surgical resection is the only potentially curative treatment for colorectal liver metastasis (CRLM), patient outcomes vary widely depending on tumor characteristics along with clinical and genomic factors. Current prognostic models, often based on limited clinical or molecular features, lack sufficient predictive power, especially in multifocal CRLM cases. We present a fully automated framework for surgical outcome prediction from pre- and post-contrast MRI acquired before surgery. Our framework consists of a segmentation pipeline and a radiomics pipeline. The segmentation pipeline learns to segment the liver, tumors, and spleen from partially annotated data by leveraging promptable foundation models to complete missing labels. Also, we propose SAMONAI, a novel zero-shot 3D prompt propagation algorithm that leverages the Segment Anything Model to segment 3D regions of interest from a single point prompt, significantly improving our segmentation pipeline's accuracy and efficiency. The predicted pre- and post-contrast segmentations are then fed into our radiomics pipeline, which extracts features from each tumor and predicts survival using SurvAMINN, a novel autoencoder-based multiple instance neural network for survival analysis. SurvAMINN jointly learns dimensionality reduction and hazard prediction from right-censored survival data, focusing on the most aggressive tumors. Extensive evaluation on an institutional dataset comprising 227 patients demonstrates that our framework surpasses existing clinical and genomic biomarkers, delivering a C-index improvement exceeding 10%. Our results demonstrate the potential of integrating automated segmentation algorithms and radiomics-based survival analysis to deliver accurate, annotation-efficient, and interpretable outcome prediction in CRLM.

Implicit Neural Representations of Intramyocardial Motion and Strain

Andrew Bell, Yan Kit Choi, Steffen Peterson, Andrew King, Muhummad Sohaib Nazir, Alistair Young

arxiv logopreprintSep 10 2025
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets.

Artificial Intelligence in Breast Cancer Care: Transforming Preoperative Planning and Patient Education with 3D Reconstruction

Mustafa Khanbhai, Giulia Di Nardo, Jun Ma, Vivienne Freitas, Caterina Masino, Ali Dolatabadi, Zhaoxun "Lorenz" Liu, Wey Leong, Wagner H. Souza, Amin Madani

arxiv logopreprintSep 10 2025
Effective preoperative planning requires accurate algorithms for segmenting anatomical structures across diverse datasets, but traditional models struggle with generalization. This study presents a novel machine learning methodology to improve algorithm generalization for 3D anatomical reconstruction beyond breast cancer applications. We processed 120 retrospective breast MRIs (January 2018-June 2023) through three phases: anonymization and manual segmentation of T1-weighted and dynamic contrast-enhanced sequences; co-registration and segmentation of whole breast, fibroglandular tissue, and tumors; and 3D visualization using ITK-SNAP. A human-in-the-loop approach refined segmentations using U-Mamba, designed to generalize across imaging scenarios. Dice similarity coefficient assessed overlap between automated segmentation and ground truth. Clinical relevance was evaluated through clinician and patient interviews. U-Mamba showed strong performance with DSC values of 0.97 ($\pm$0.013) for whole organs, 0.96 ($\pm$0.024) for fibroglandular tissue, and 0.82 ($\pm$0.12) for tumors on T1-weighted images. The model generated accurate 3D reconstructions enabling visualization of complex anatomical features. Clinician interviews indicated improved planning, intraoperative navigation, and decision support. Integration of 3D visualization enhanced patient education, communication, and understanding. This human-in-the-loop machine learning approach successfully generalizes algorithms for 3D reconstruction and anatomical segmentation across patient datasets, offering enhanced visualization for clinicians, improved preoperative planning, and more effective patient education, facilitating shared decision-making and empowering informed patient choices across medical applications.

Implementing a Resource-Light and Low-Code Large Language Model System for Information Extraction from Mammography Reports: A Pilot Study.

Dennstädt F, Fauser S, Cihoric N, Schmerder M, Lombardo P, Cereghetti GM, von Däniken S, Minder T, Meyer J, Chiang L, Gaio R, Lerch L, Filchenko I, Reichenpfader D, Denecke K, Vojvodic C, Tatalovic I, Sander A, Hastings J, Aebersold DM, von Tengg-Kobligk H, Nairz K

pubmed logopapersSep 10 2025
Large language models (LLMs) have been successfully used for data extraction from free-text radiology reports. Most current studies were conducted with LLMs accessed via an application programming interface (API). We evaluated the feasibility of using open-source LLMs, deployed on limited local hardware resources for data extraction from free-text mammography reports, using a common data element (CDE)-based structure. Seventy-nine CDEs were defined by an interdisciplinary expert panel, reflecting real-world reporting practice. Sixty-one reports were classified by two independent researchers to establish ground truth. Five different open-source LLMs deployable on a single GPU were used for data extraction using the general-classifier Python package. Extractions were performed for five different prompt approaches with calculation of overall accuracy, micro-recall and micro-F1. Additional analyses were conducted using thresholds for the relative probability of classifications. High inter-rater agreement was observed between manual classifiers (Cohen's kappa 0.83). Using default prompts, the LLMs achieved accuracies of 59.2-72.9%. Chain-of-thought prompting yielded mixed results, while few-shot prompting led to decreased accuracy. Adaptation of the default prompts to precisely define classification tasks improved performance for all models, with accuracies of 64.7-85.3%. Setting certainty thresholds further improved accuracies to > 90% but reduced the coverage rate to < 50%. Locally deployed open-source LLMs can effectively extract information from mammography reports, maintaining compatibility with limited computational resources. Selection and evaluation of the model and prompting strategy are critical. Clear, task-specific instructions appear crucial for high performance. Using a CDE-based framework provides clear semantics and structure for the data extraction.

Implicit Neural Representations of Intramyocardial Motion and Strain

Andrew Bell, Yan Kit Choi, Steffen E Petersen, Andrew King, Muhummad Sohaib Nazir, Alistair A Young

arxiv logopreprintSep 10 2025
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets.

Few-shot learning for highly accelerated 3D time-of-flight MRA reconstruction.

Li H, Chiew M, Dragonu I, Jezzard P, Okell TW

pubmed logopapersSep 10 2025
To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms. A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects. The proposed method achieved superior reconstruction performance on experimentally acquired in vivo data over comparison methods, preserving most fine vessels with minimal artifacts with up to eight-fold acceleration. Compared to other simulation techniques, the proposed method generated more realistic raw k-space data for 3D TOF-MRA. Consistently high-quality reconstructions were also observed on prospectively undersampled data. By leveraging few-shot learning, the proposed method enabled highly accelerated 3D TOF-MRA relying on minimal experimentally acquired data, achieving promising results on both retrospective and prospective in vivo data while outperforming existing methods. Given the challenges of acquiring and sharing large raw k-space datasets, this holds significant promise for advancing research and clinical applications in high-resolution, whole-head 3D TOF-MRA imaging.
Page 20 of 3433422 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.