Sort by:
Page 20 of 42417 results

PROTEUS: A Physically Realistic Contrast-Enhanced Ultrasound Simulator-Part I: Numerical Methods.

Blanken N, Heiles B, Kuliesh A, Versluis M, Jain K, Maresca D, Lajoinie G

pubmed logopapersJul 1 2025
Ultrasound contrast agents (UCAs) have been used as vascular reporters for the past 40 years. The ability to enhance vascular features in ultrasound images with engineered lipid-shelled microbubbles has enabled breakthroughs such as the detection of tissue perfusion or super-resolution imaging of the microvasculature. However, advances in the field of contrast-enhanced ultrasound are hindered by experimental variables that are difficult to control in a laboratory setting, such as complex vascular geometries, the lack of ground truth, and tissue nonlinearities. In addition, the demand for large datasets to train deep learning-based computational ultrasound imaging methods calls for the development of a simulation tool that can reproduce the physics of ultrasound wave interactions with tissues and microbubbles. Here, we introduce a physically realistic contrast-enhanced ultrasound simulator (PROTEUS) consisting of four interconnected modules that account for blood flow dynamics in segmented vascular geometries, intravascular microbubble trajectories, ultrasound wave propagation, and nonlinear microbubble scattering. The first part of this study describes the numerical methods that enabled this development. We demonstrate that PROTEUS can generate contrast-enhanced radio-frequency (RF) data in various vascular architectures across the range of medical ultrasound frequencies. PROTEUS offers a customizable framework to explore novel ideas in the field of contrast-enhanced ultrasound imaging. It is released as an open-source tool for the scientific community.

SHFormer: Dynamic spectral filtering convolutional neural network and high-pass kernel generation transformer for adaptive MRI reconstruction.

Ramanarayanan S, G S R, Fahim MA, Ram K, Venkatesan R, Sivaprakasam M

pubmed logopapersJul 1 2025
Attention Mechanism (AM) selectively focuses on essential information for imaging tasks and captures relationships between regions from distant pixel neighborhoods to compute feature representations. Accelerated magnetic resonance image (MRI) reconstruction can benefit from AM, as the imaging process involves acquiring Fourier domain measurements that influence the image representation in a non-local manner. However, AM-based models are more adept at capturing low-frequency information and have limited capacity in constructing high-frequency representations, restricting the models to smooth reconstruction. Secondly, AM-based models need mode-specific retraining for multimodal MRI data as their knowledge is restricted to local contextual variations within modes that might be inadequate to capture the diverse transferable features across heterogeneous data domains. To address these challenges, we propose a neuromodulation-based discriminative multi-spectral AM for scalable MRI reconstruction, that can (i) propagate the context-aware high-frequency details for high-quality image reconstruction, and (ii) capture features reusable to deviated unseen domains in multimodal MRI, to offer high practical value for the healthcare industry and researchers. The proposed network consists of a spectral filtering convolutional neural network to capture mode-specific transferable features to generalize to deviated MRI data domains and a dynamic high-pass kernel generation transformer that focuses on high-frequency details for improved reconstruction. We have evaluated our model on various aspects, such as comparative studies in supervised and self-supervised learning, diffusion model-based training, closed-set and open-set generalization under heterogeneous MRI data, and interpretation-based analysis. Our results show that the proposed method offers scalable and high-quality reconstruction with best improvement margins of ∼1 dB in PSNR and ∼0.01 in SSIM under unseen scenarios. Our code is available at https://github.com/sriprabhar/SHFormer.

MedDiff-FT: Data-Efficient Diffusion Model Fine-tuning with Structural Guidance for Controllable Medical Image Synthesis

Jianhao Xie, Ziang Zhang, Zhenyu Weng, Yuesheng Zhu, Guibo Luo

arxiv logopreprintJul 1 2025
Recent advancements in deep learning for medical image segmentation are often limited by the scarcity of high-quality training data.While diffusion models provide a potential solution by generating synthetic images, their effectiveness in medical imaging remains constrained due to their reliance on large-scale medical datasets and the need for higher image quality. To address these challenges, we present MedDiff-FT, a controllable medical image generation method that fine-tunes a diffusion foundation model to produce medical images with structural dependency and domain specificity in a data-efficient manner. During inference, a dynamic adaptive guiding mask enforces spatial constraints to ensure anatomically coherent synthesis, while a lightweight stochastic mask generator enhances diversity through hierarchical randomness injection. Additionally, an automated quality assessment protocol filters suboptimal outputs using feature-space metrics, followed by mask corrosion to refine fidelity. Evaluated on five medical segmentation datasets,MedDiff-FT's synthetic image-mask pairs improve SOTA method's segmentation performance by an average of 1% in Dice score. The framework effectively balances generation quality, diversity, and computational efficiency, offering a practical solution for medical data augmentation. The code is available at https://github.com/JianhaoXie1/MedDiff-FT.

CXR-LLaVA: a multimodal large language model for interpreting chest X-ray images.

Lee S, Youn J, Kim H, Kim M, Yoon SH

pubmed logopapersJul 1 2025
This study aimed to develop an open-source multimodal large language model (CXR-LLaVA) for interpreting chest X-ray images (CXRs), leveraging recent advances in large language models (LLMs) to potentially replicate the image interpretation skills of human radiologists. For training, we collected 592,580 publicly available CXRs, of which 374,881 had labels for certain radiographic abnormalities (Dataset 1) and 217,699 provided free-text radiology reports (Dataset 2). After pre-training a vision transformer with Dataset 1, we integrated it with an LLM influenced by the LLaVA network. Then, the model was fine-tuned, primarily using Dataset 2. The model's diagnostic performance for major pathological findings was evaluated, along with the acceptability of radiologic reports by human radiologists, to gauge its potential for autonomous reporting. The model demonstrated impressive performance in test sets, achieving an average F1 score of 0.81 for six major pathological findings in the MIMIC internal test set and 0.56 for six major pathological findings in the external test set. The model's F1 scores surpassed those of GPT-4-vision and Gemini-Pro-Vision in both test sets. In human radiologist evaluations of the external test set, the model achieved a 72.7% success rate in autonomous reporting, slightly below the 84.0% rate of ground truth reports. This study highlights the significant potential of multimodal LLMs for CXR interpretation, while also acknowledging the performance limitations. Despite these challenges, we believe that making our model open-source will catalyze further research, expanding its effectiveness and applicability in various clinical contexts. Question How can a multimodal large language model be adapted to interpret chest X-rays and generate radiologic reports? Findings The developed CXR-LLaVA model effectively detects major pathological findings in chest X-rays and generates radiologic reports with a higher accuracy compared to general-purpose models. Clinical relevance This study demonstrates the potential of multimodal large language models to support radiologists by autonomously generating chest X-ray reports, potentially reducing diagnostic workloads and improving radiologist efficiency.

Human visual perception-inspired medical image segmentation network with multi-feature compression.

Li G, Huang Q, Wang W, Liu L

pubmed logopapersJul 1 2025
Medical image segmentation is crucial for computer-aided diagnosis and treatment planning, directly influencing clinical decision-making. To enhance segmentation accuracy, existing methods typically fuse local, global, and various other features. However, these methods often ignore the negative impact of noise on the results during the feature fusion process. In contrast, certain regions of the human visual system, such as the inferotemporal cortex and parietal cortex, effectively suppress irrelevant noise while integrating multiple features-a capability lacking in current methods. To address this gap, we propose MS-Net, a medical image segmentation network inspired by human visual perception. MS-Net incorporates a multi-feature compression (MFC) module that mimics the human visual system's processing of complex images, first learning various feature types and subsequently filtering out irrelevant ones. Additionally, MS-Net features a segmentation refinement (SR) module that emulates how physicians segment lesions. This module initially performs coarse segmentation to capture the lesion's approximate location and shape, followed by a refinement step to achieve precise boundary delineation. Experimental results demonstrate that MS-Net not only attains state-of-the-art segmentation performance across three public datasets but also significantly reduces the number of parameters compared to existing models. Code is available at https://github.com/guangguangLi/MS-Net.

CAD-Unet: A capsule network-enhanced Unet architecture for accurate segmentation of COVID-19 lung infections from CT images.

Dang Y, Ma W, Luo X, Wang H

pubmed logopapersJul 1 2025
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity among infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel type of network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.

Synthetic Versus Classic Data Augmentation: Impacts on Breast Ultrasound Image Classification.

Medghalchi Y, Zakariaei N, Rahmim A, Hacihaliloglu I

pubmed logopapersJul 1 2025
The effectiveness of deep neural networks (DNNs) for the ultrasound image analysis depends on the availability and accuracy of the training data. However, the large-scale data collection and annotation, particularly in medical fields, is often costly and time consuming, especially when healthcare professionals are already burdened with their clinical responsibilities. Ensuring that a model remains robust across different imaging conditions-such as variations in ultrasound devices and manual transducer operation-is crucial in the ultrasound image analysis. The data augmentation is a widely used solution, as it increases both the size and diversity of datasets, thereby enhancing the generalization performance of DNNs. With the advent of generative networks such as generative adversarial networks (GANs) and diffusion-based models, the synthetic data generation has emerged as a promising augmentation technique. However, comprehensive studies comparing classic and generative method-based augmentation methods are lacking, particularly in ultrasound-based breast cancer imaging, where variability in breast density, tumor morphology, and operator skill poses significant challenges. This study aims to compare the effectiveness of classic and generative network-based data augmentation techniques in improving the performance and robustness of breast ultrasound image classification models. Specifically, we seek to determine whether the computational intensity of generative networks is justified in data augmentation. This analysis will provide valuable insights into the role and benefits of each technique in enhancing the diagnostic accuracy of DNN for breast cancer diagnosis. The code for this work will be available at: ht.tps://github.com/yasamin-med/SCDA.git.

Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation.

Silva-Rodríguez J, Dolz J, Ben Ayed I

pubmed logopapersJul 1 2025
The recent popularity of foundation models and the pre-train-and-adapt paradigm, where a large-scale model is transferred to downstream tasks, is gaining attention for volumetric medical image segmentation. However, current transfer learning strategies devoted to full fine-tuning for transfer learning may require significant resources and yield sub-optimal results when the labeled data of the target task is scarce. This makes its applicability in real clinical settings challenging since these institutions are usually constrained on data and computational resources to develop proprietary solutions. To address this challenge, we formalize Few-Shot Efficient Fine-Tuning (FSEFT), a novel and realistic scenario for adapting medical image segmentation foundation models. This setting considers the key role of both data- and parameter-efficiency during adaptation. Building on a foundation model pre-trained on open-access CT organ segmentation sources, we propose leveraging Parameter-Efficient Fine-Tuning and black-box Adapters to address such challenges. Furthermore, novel efficient adaptation methodologies are introduced in this work, which include Spatial black-box Adapters that are more appropriate for dense prediction tasks and constrained transductive inference, leveraging task-specific prior knowledge. Our comprehensive transfer learning experiments confirm the suitability of foundation models in medical image segmentation and unveil the limitations of popular fine-tuning strategies in few-shot scenarios. The project code is available: https://github.com/jusiro/fewshot-finetuning.

Deep learning model for grading carcinoma with Gini-based feature selection and linear production-inspired feature fusion.

Kundu S, Mukhopadhyay S, Talukdar R, Kaplun D, Voznesensky A, Sarkar R

pubmed logopapersJul 1 2025
The most common types of kidneys and liver cancer are renal cell carcinoma (RCC) and hepatic cell carcinoma (HCC), respectively. Accurate grading of these carcinomas is essential for determining the most appropriate treatment strategies, including surgery or pharmacological interventions. Traditional deep learning methods often struggle with the intricate and complex patterns seen in histopathology images of RCC and HCC, leading to inaccuracies in classification. To enhance the grading accuracy for liver and renal cell carcinoma, this research introduces a novel feature selection and fusion framework inspired by economic theories, incorporating attention mechanisms into three Convolutional Neural Network (CNN) architectures-MobileNetV2, DenseNet121, and InceptionV3-as foundational models. The attention mechanisms dynamically identify crucial image regions, leveraging each CNN's unique strengths. Additionally, a Gini-based feature selection method is implemented to prioritize the most discriminative features, and the extracted features from each network are optimally combined using a fusion technique modeled after a linear production function, maximizing each model's contribution to the final prediction. Experimental evaluations demonstrate that this proposed approach outperforms existing state-of-the-art models, achieving high accuracies of 93.04% for RCC and 98.24% for LCC. This underscores the method's robustness and effectiveness in accurately grading these types of cancers. The code of our method is publicly available in https://github.com/GHOSTCALL983/GRADE-CLASSIFICATION .

CALIMAR-GAN: An unpaired mask-guided attention network for metal artifact reduction in CT scans.

Scardigno RM, Brunetti A, Marvulli PM, Carli R, Dotoli M, Bevilacqua V, Buongiorno D

pubmed logopapersJul 1 2025
High-quality computed tomography (CT) scans are essential for accurate diagnostic and therapeutic decisions, but the presence of metal objects within the body can produce distortions that lower image quality. Deep learning (DL) approaches using image-to-image translation for metal artifact reduction (MAR) show promise over traditional methods but often introduce secondary artifacts. Additionally, most rely on paired simulated data due to limited availability of real paired clinical data, restricting evaluation on clinical scans to qualitative analysis. This work presents CALIMAR-GAN, a generative adversarial network (GAN) model that employs a guided attention mechanism and the linear interpolation algorithm to reduce artifacts using unpaired simulated and clinical data for targeted artifact reduction. Quantitative evaluations on simulated images demonstrated superior performance, achieving a PSNR of 31.7, SSIM of 0.877, and Fréchet inception distance (FID) of 22.1, outperforming state-of-the-art methods. On real clinical images, CALIMAR-GAN achieved the lowest FID (32.7), validated as a valuable complement to qualitative assessments through correlation with pixel-based metrics (r=-0.797 with PSNR, p<0.01; r=-0.767 with MS-SSIM, p<0.01). This work advances DL-based artifact reduction into clinical practice with high-fidelity reconstructions that enhance diagnostic accuracy and therapeutic outcomes. Code is available at https://github.com/roberto722/calimar-gan.
Page 20 of 42417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.