Automated Emergent Large Vessel Occlusion Detection Using Viz.ai Software and Its Impact on Stroke Workflow Metrics and Patient Outcomes in Stroke Centers: A Systematic Review and Meta-analysis.
Sarhan K, Azzam AY, Moawad MHED, Serag I, Abbas A, Sarhan AE
•papers•May 8 2025The implementation of artificial intelligence (AI), particularly Viz.ai software in stroke care, has emerged as a promising tool to enhance the detection of large vessel occlusion (LVO) and to improve stroke workflow metrics and patient outcomes. The aim of this systematic review and meta-analysis is to evaluate the impact of Viz.ai on stroke workflow efficiency in hospitals and on patients' outcomes. Following the PRISMA guidelines, we conducted a comprehensive search on electronic databases, including PubMed, Web of Science, and Scopus databases, to obtain relevant studies until 25 October 2024. Our primary outcomes were door-to-groin puncture (DTG) time, CT scan-to-start of endovascular treatment (EVT) time, CT scan-to-recanalization time, and door-in-door-out time. Secondary outcomes included symptomatic intracranial hemorrhage (ICH), any ICH, mortality, mRS score < 2 at 90 days, and length of hospital stay. A total of 12 studies involving 15,595 patients were included in our analysis. The pooled analysis demonstrated that the implementation of the Viz.ai algorithm was associated with lesser CT scan to EVT time (SMD -0.71, 95% CI [-0.98, -0.44], p < 0.001) and DTG time (SMD -0.50, 95% CI [-0.66, -0.35], p < 0.001) as well as CT to recanalization time (SMD -0.55, 95% CI [-0.76, -0.33], p < 0.001). Additionally, patients in the post-AI group had significantly lower door-in door-out time than the pre-AI group (SMD -0.49, 95% CI [-0.71, -0.28], p < 0.001). Despite the workflow metrics improvement, our analysis did not reveal statistically significant differences in patient clinical outcomes (p > 0.05). Our results suggest that the integration of the Viz.ai platform in stroke care holds significant potential for reducing EVT delays in patients with LVO and optimizing stroke flow metrics in comprehensive stroke centers. Further studies are required to validate its efficacy in improving clinical outcomes in patients with LVO.