Sort by:
Page 2 of 65646 results

Volumetric and Diffusion Tensor Imaging Abnormalities Are Associated With Behavioral Changes Post-Concussion in a Youth Pig Model of Mild Traumatic Brain Injury.

Sanjida I, Alesa N, Chenyang L, Jiangyang Z, Bianca DM, Ana V, Shaun S, Avner M, Kirk M, Aimee C, Jie H, Ricardo MA, Jane M, Galit P

pubmed logopapersJul 1 2025
Mild traumatic brain injury (mTBI) caused by sports-related incidents in children and youth often leads to prolonged cognitive impairments but remains difficult to diagnose. In order to identify clinically relevant imaging and behavioral biomarkers associated concussion, a closed-head mTBI was induced in adolescent pigs. Twelve (n = 4 male and n = 8 female), 16-week old Yucatan pigs were tested; n = 6 received mTBI and n = 6 received a sham procedure. T1-weighted imaging was used to assess volumetric alterations in different regions of the brain and diffusion tensor imaging (DTI) to examine microstructural damage in white matter. The pigs were imaged at 1- and 3-month post-injury. Neuropsychological screening for executive function and anxiety were performed before and in the months after the injury. The volumetric analysis showed significant longitudinal changes in pigs with mTBI compared with sham, which may be attributed to swelling and neuroinflammation. Fractional anisotropy (FA) values derived from DTI images demonstrated a 21% increase in corpus callosum from 1 to 3 months in mTBI pigs, which is significantly higher than in sham pigs (4.8%). Additionally, comparisons of the left and right internal capsules revealed a decrease in FA in the right internal capsule for mTBI pigs, which may indicate demyelination. The neuroimaging results suggest that the injury had disrupted the maturation of white and gray matter in the developing brain. Behavioral testing showed that compare to sham pigs, mTBI pigs exhibited 23% increased activity in open field tests, 35% incraesed escape attempts, along with a 65% decrease in interaction with the novel object, suggesting possible memory impairments and cognitive deficits. The correlation analysis showed an associations between volumetric features and behavioral metrics. Furthermore, a machine learning model, which integrated FA, volumetric features and behavioral test metrics, achieved 67% accuracy, indicating its potential to differentiate the two groups. Thus, the imaging biomarkers were indicative of long-term behavioral impairments and could be crucial to the clinical management of concussion in youth.

Deep Learning Reveals Liver MRI Features Associated With PNPLA3 I148M in Steatotic Liver Disease.

Chen Y, Laevens BPM, Lemainque T, Müller-Franzes GA, Seibel T, Dlugosch C, Clusmann J, Koop PH, Gong R, Liu Y, Jakhar N, Cao F, Schophaus S, Raju TB, Raptis AA, van Haag F, Joy J, Loomba R, Valenti L, Kather JN, Brinker TJ, Herzog M, Costa IG, Hernando D, Schneider KM, Truhn D, Schneider CV

pubmed logopapersJul 1 2025
Steatotic liver disease (SLD) is the most common liver disease worldwide, affecting 30% of the global population. It is strongly associated with the interplay of genetic and lifestyle-related risk factors. The genetic variant accounting for the largest fraction of SLD heritability is PNPLA3 I148M, which is carried by 23% of the western population and increases the risk of SLD two to three-fold. However, identification of variant carriers is not part of routine clinical care and prevents patients from receiving personalised care. We analysed MRI images and common genetic variants in PNPLA3, TM6SF2, MTARC1, HSD17B13 and GCKR from a cohort of 45 603 individuals from the UK Biobank. Proton density fat fraction (PDFF) maps were generated using a water-fat separation toolbox, applied to the magnitude and phase MRI data. The liver region was segmented using a U-Net model trained on 600 manually segmented ground truth images. The resulting liver masks and PDFF maps were subsequently used to calculate liver PDFF values. Individuals with (PDFF ≥ 5%) and without SLD (PDFF < 5%) were selected as the study cohort and used to train and test a Vision Transformer classification model with five-fold cross validation. We aimed to differentiate individuals who are homozygous for the PNPLA3 I148M variant from non-carriers, as evaluated by the area under the receiver operating characteristic curve (AUROC). To ensure a clear genetic contrast, all heterozygous individuals were excluded. To interpret our model, we generated attention maps that highlight the regions that are most predictive of the outcomes. Homozygosity for the PNPLA3 I148M variant demonstrated the best predictive performance among five variants with AUROC of 0.68 (95% CI: 0.64-0.73) in SLD patients and 0.57 (95% CI: 0.52-0.61) in non-SLD patients. The AUROCs for the other SNPs ranged from 0.54 to 0.57 in SLD patients and from 0.52 to 0.54 in non-SLD patients. The predictive performance was generally higher in SLD patients compared to non-SLD patients. Attention maps for PNPLA3 I148M carriers showed that fat deposition in regions adjacent to the hepatic vessels, near the liver hilum, plays an important role in predicting the presence of the I148M variant. Our study marks novel progress in the non-invasive detection of homozygosity for PNPLA3 I148M through the application of deep learning models on MRI images. Our findings suggest that PNPLA3 I148M might affect the liver fat distribution and could be used to predict the presence of PNPLA3 variants in patients with fatty liver. The findings of this research have the potential to be integrated into standard clinical practice, particularly when combined with clinical and biochemical data from other modalities to increase accuracy, enabling easier identification of at-risk individuals and facilitating the development of tailored interventions for PNPLA3 I148M-associated liver disease.

Machine learning in neuroimaging and computational pathophysiology of Parkinson's disease: A comprehensive review and meta-analysis.

Sharma K, Shanbhog M, Singh K

pubmed logopapersJul 1 2025
In recent years, machine learning and deep learning have shown potential for improving Parkinson's disease (PD) diagnosis, one of the most common neurodegenerative diseases. This comprehensive analysis examines machine learning and deep learning-based Parkinson's disease diagnosis using MRI, speech, and handwriting datasets. To thoroughly analyze PD, this study collected data from scientific literature, experimental investigations, publicly accessible datasets, and global health reports. This study examines the worldwide historical setting of Parkinson's disease, focusing on its increasing prevalence and inequities in treatment access across various regions. A comprehensive summary consolidates essential findings from clinical investigations and pertinent datasets related to Parkinson's disease management. The worldwide context, prospective treatments, therapies, and drugs for Parkinson's disease have been thoroughly examined. This analysis identifies significant research deficiencies and suggests future methods, emphasizing the necessity for more extensive and diverse datasets and improved model accessibility. The current study proposes the Meta-Park model for diagnosing Parkinson's disease, achieving training, testing, and validation accuracy of 97.67 %, 95 %, and 94.04 %. This method provides a dependable and scalable way to improve clinical decision-making in managing Parkinson's disease. This research seeks to provide innovative, data-driven decisions for early diagnosis and effective treatment by merging the proposed method with a thorough examination of existing interventions, providing renewed hope to patients and the medical community.

Improve robustness to mismatched sampling rate: An alternating deep low-rank approach for exponential function reconstruction and its biomedical magnetic resonance applications.

Huang Y, Wang Z, Zhang X, Cao J, Tu Z, Lin M, Li L, Jiang X, Guo D, Qu X

pubmed logopapersJul 1 2025
Undersampling accelerates signal acquisition at the expense of introducing artifacts. Removing these artifacts is a fundamental problem in signal processing and this task is also called signal reconstruction. Through modeling signals as the superimposed exponential functions, deep learning has achieved fast and high-fidelity signal reconstruction by training a mapping from the undersampled exponentials to the fully sampled ones. However, the mismatch, such as undersampling rates (25 % vs. 50 %), anatomical region (knee vs. brain), and contrast configurations (PDw vs. T<sub>2</sub>w), between the training and target data will heavily compromise the reconstruction. To overcome this limitation, we propose Alternating Deep Low-Rank (ADLR), which combines deep learning solvers and classic optimization solvers. Experimental validation on the reconstruction of synthetic and real-world biomedical magnetic resonance signals demonstrates that ADLR can effectively alleviate the mismatch issue and achieve lower reconstruction errors than state-of-the-art methods.

Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders.

Seeley SH, Fremont R, Schreiber Z, Morris LS, Cahn L, Murrough JW, Schiller D, Charney DS, Pietrzak RH, Perez-Rodriguez MM, Feder A

pubmed logopapersJul 1 2025
Despite their exposure to potentially traumatic stressors, the majority of World Trade Center (WTC) responders-those who worked on rescue, recovery, and cleanup efforts on or following September 11, 2001-have shown psychological resilience, never developing long-term psychopathology. Psychological resilience may be protective against the earlier age-related cognitive changes associated with posttraumatic stress disorder (PTSD) in this cohort. In the current study, we calculated the difference between estimated brain age from structural magnetic resonance imaging (MRI) data and chronological age in WTC responders who participated in a parent functional MRI study of resilience (<i>N</i> = 97). We hypothesized that highly resilient responders would show the least brain aging and explored associations between brain aging and psychological and cognitive measures. WTC responders screened for the absence of cognitive impairment were classified into 3 groups: a WTC-related PTSD group (<i>n</i> = 32), a Highly Resilient group without lifetime psychopathology despite high WTC-related exposure (<i>n</i> = 34), and a Lower WTC-Exposed control group also without lifetime psychopathology (<i>n</i> = 31). We used <i>BrainStructureAges</i>, a deep learning algorithm that estimates voxelwise age from T1-weighted MRI data to calculate decelerated (or accelerated) brain aging relative to chronological age. Globally, brain aging was decelerated in the Highly Resilient group and accelerated in the PTSD group, with a significant group difference (<i>p</i> = .021, Cohen's <i>d</i> = 0.58); the Lower WTC-Exposed control group exhibited no significant brain age gap or group difference. Lesser brain aging was associated with resilience-linked factors including lower emotional suppression, greater optimism, and better verbal learning. Cognitively healthy WTC responders show differences in brain aging related to resilience and PTSD.

Accelerating CEST MRI With Deep Learning-Based Frequency Selection and Parameter Estimation.

Shen C, Cheema K, Xie Y, Ruan D, Li D

pubmed logopapersJul 1 2025
Chemical exchange saturation transfer (CEST) MRI is a powerful molecular imaging technique for detecting metabolites through proton exchange. While CEST MRI provides high sensitivity, its clinical application is hindered by prolonged scan time due to the need for imaging across numerous frequency offsets for parameter estimation. Since scan time is directly proportional to the number of frequency offsets, identifying and selecting the most informative frequency can significantly reduce acquisition time. We propose a novel deep learning-based framework that integrates frequency selection and parameter estimation to accelerate CEST MRI. Our method leverages channel pruning via batch normalization to identify the most informative frequency offsets while simultaneously training the network for accurate parametric map prediction. Using data from six healthy volunteers, channel pruning selects 13 informative frequency offsets out of 53 without compromising map quality. Images from selected frequency offsets were reconstructed using the MR Multitasking method, which employs a low-rank tensor model to enable under-sampling of k-space lines for each frequency offset, further reducing scan time. Predicted parametric maps of amide proton transfer (APT), nuclear overhauser effect (NOE), and magnetization transfer (MT) based on these selected frequencies were comparable in quality to maps generated using all frequency offsets, achieving superior performance compared to Fisher information-based selection methods from our previous work. This integrated approach has the potential to reduce the whole-brain CEST MRI scan time from the original 5:30 min to under 1:30 min without compromising map quality. By leveraging deep learning for frequency selection and parametric map prediction, the proposed framework demonstrates its potential for efficient and practical clinical implementation. Future studies will focus on extending this method to patient populations and addressing challenges such as B<sub>0</sub> inhomogeneity and abnormal signal variation in diseased tissues.

Assessment of biventricular cardiac function using free-breathing artificial intelligence cine with motion correction: Comparison with standard multiple breath-holding cine.

Ran L, Yan X, Zhao Y, Yang Z, Chen Z, Jia F, Song X, Huang L, Xia L

pubmed logopapersJul 1 2025
To assess the image quality and biventricular function utilizing a free-breathing artificial intelligence cine method with motion correction (FB AI MOCO). A total of 72 participants (mean age 38.3 ± 15.4 years, 40 males) prospectively enrolled in this single-center, cross-sectional study underwent cine scans using standard breath-holding (BH) cine and FB AI MOCO cine at 3.0 Tesla. The image quality of the cine images was evaluated with a 5-point Ordinal Likert scale based on blood-pool to myocardium contrast, endocardial edge definition, and artifacts, and overall quality score was calculated by the equal weight average of all three criteria, apparent signal to noise ratio (aSNR), estimated contrast to noise ratio (eCNR) were assessed. Biventricular functional parameters including Left Ventricular (LV), Right Ventricular (RV) End-Diastolic Volume (EDV), End-Systolic Volume (ESV), Stroke Volume (SV), Ejection Fraction (EF), and LV End-Diastolic Mass (LVEDM) were also assessed. Comparison between two sequences was assessed using paired t-test and Wilcoxon signed-rank test, correlation using Pearson correlation. The agreement of quantitative parameters was assessed using intraclass correlation coefficient (ICC) and Bland-Altman analysis. P < 0.05 was statistically significant. The total acquisition time of the entire stack for FB AI MOCO cine (14.7 s ± 1.9 s) was notably shorter than that for standard BH cine (82.6 s ± 11.9 s, P < 0.001). The aSNR between FB AI MOCO cine and standard BH cine has no significantly difference (76.7 ± 20.7 vs. 79.8 ± 20.7, P = 0.193). The eCNR of FB AI MOCO cine was higher than standard BH cine (191.6 ± 54.0 vs. 155.8 ± 68.4, P < 0.001), as was the scores of blood-pool to myocardium contrast (4.6 ± 0.5 vs. 4.4 ± 0.6, P = 0.003). Qualitative scores including endocardial edge definition (4.2 ± 0.5 vs. 4.3 ± 0.7, P = 0.123), artifact presence (4.3 ± 0.6 vs. 4.1 ± 0.8, P = 0.085), and overall image quality (4.4 ± 0.4 vs. 4.3 ± 0.6, P = 0.448), showed no significant differences between the two methods. Representative RV and LV functional parameters - including RVEDV (102.2 (86.4, 120.4) ml vs. 104.0 (88.5, 120.3) ml, P = 0.294), RVEF (31.0 ± 11.1 % vs. 31.2 ± 11.0 %, P = 0.570), and LVEDV (106.2 (86.7, 131.3) ml vs. 105.8 (84.4, 130.3) ml, P = 0.450) - also did not differ significantly between the two methods. Strong correlations (r > 0.900) and excellent agreement (ICC > 0.900) were found for all biventricular functional parameters between the two sequences. In subgroups with reduced LVEF (<50 %, n = 24) or elevated heart rate (≥80  bpm, n = 17), no significant differences were observed in any biventricular functional metrics (P > 0.05 for all) between the two sequences. In comparison to multiple BH cine, the FB AI MOCO cine achieved comparable image quality and biventricular functional parameters with shorter scan times, suggesting its promising potential for clinical applications.

A deep learning framework for reconstructing Breast Amide Proton Transfer weighted imaging sequences from sparse frequency offsets to dense frequency offsets.

Yang Q, Su S, Zhang T, Wang M, Dou W, Li K, Ren Y, Zheng Y, Wang M, Xu Y, Sun Y, Liu Z, Tan T

pubmed logopapersJul 1 2025
Amide Proton Transfer (APT) technique is a novel functional MRI technique that enables quantification of protein metabolism, but its wide application is largely limited in clinical settings by its long acquisition time. One way to reduce the scanning time is to obtain fewer frequency offset images during image acquisition. However, sparse frequency offset images are not inadequate to fit the z-spectral, a curve essential to quantifying the APT effect, which might compromise its quantification. In our study, we develop a deep learning-based model that allows for reconstructing dense frequency offsets from sparse ones, potentially reducing scanning time. We propose to leverage time-series convolution to extract both short and long-range spatial and frequency features of the APT imaging sequence. Our proposed model outperforms other seq2seq models, achieving superior reconstruction with a peak signal-to-noise ratio of 45.8 (95% confidence interval (CI): [44.9 46.7]), and a structural similarity index of 0.989 (95% CI:[0.987 0.993]) for the tumor region. We have integrated a weighted layer into our model to evaluate the impact of individual frequency offset on the reconstruction process. The weights assigned to the frequency offset at ±6.5 ppm, 0 ppm, and 3.5 ppm demonstrate higher significance as learned by the model. Experimental results demonstrate that our proposed model effectively reconstructs dense frequency offsets (n = 29, from 7 to -7 with 0.5 ppm as an interval) from data with 21 frequency offsets, reducing scanning time by 25%. This work presents a method for shortening the APT imaging acquisition time, offering potential guidance for parameter settings in APT imaging and serving as a valuable reference for clinicians.

Breast tumour classification in DCE-MRI via cross-attention and discriminant correlation analysis enhanced feature fusion.

Pan F, Wu B, Jian X, Li C, Liu D, Zhang N

pubmed logopapersJul 1 2025
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has proven to be highly sensitive in diagnosing breast tumours, due to the kinetic and volumetric features inherent in it. To utilise the kinetics-related and volume-related information, this paper aims to develop and validate a classification for differentiating benign and malignant breast tumours based on DCE-MRI, though fusing deep features and cross-attention-encoded radiomics features using discriminant correlation analysis (DCA). Classification experiments were conducted on a dataset comprising 261 individuals who underwent DCE-MRI including those with multiple tumours, resulting in 137 benign and 163 malignant tumours. To improve the strength of correlation between features and reduce features' redundancy, a novel fusion method that fuses deep features and encoded radiomics features based on DCA (eFF-DCA) is proposed. The eFF-DCA includes three components: (1) a feature extraction module to capture kinetic information across phases, (2) a radiomics feature encoding module employing a cross-attention mechanism to enhance inter-phase feature correlation, and (3) a DCA-based fusion module that transforms features to maximise intra-class correlation while minimising inter-class redundancy, facilitating effective classification. The proposed eFF-DCA method achieved an accuracy of 90.9% and an area under the receiver operating characteristic curve of 0.942, outperforming methods using single-modal features. The proposed eFF-DCA utilises DCE-MRI kinetic-related and volume-related features to improve breast tumour diagnosis accuracy, but non-end-to-end design limits multimodal fusion. Future research should explore unified end-to-end deep learning architectures that enable seamless multimodal feature fusion and joint optimisation of feature extraction and classification.

A Minimal Annotation Pipeline for Deep Learning Segmentation of Skeletal Muscles.

Baudin PY, Balsiger F, Beck L, Boisserie JM, Jouan S, Marty B, Reyngoudt H, Scheidegger O

pubmed logopapersJul 1 2025
Translating quantitative skeletal muscle MRI biomarkers into clinics requires efficient automatic segmentation methods. The purpose of this work is to investigate a simple yet effective iterative methodology for building a high-quality automatic segmentation model while minimizing the manual annotation effort. We used a retrospective database of quantitative MRI examinations (n = 70) of healthy and pathological thighs for training a nnU-Net segmentation model. Healthy volunteers and patients with various neuromuscular diseases, broadly categorized as dystrophic, inflammatory, neurogenic, and unlabeled NMDs. We designed an iterative procedure, progressively adding cases to the training set and using a simple visual five-level rating scale to judge the validity of generated segmentations for clinical use. On an independent test set (n = 20), we assessed the quality of the segmentation in 13 individual thigh muscles using standard segmentation metrics-dice coefficient (DICE) and 95% Hausdorff distance (HD95)-and quantitative biomarkers-cross-sectional area (CSA), fat fraction (FF), and water-T1/T2. We obtained high-quality segmentations (DICE = 0.88 ± 0.15/0.86 ± 0.14, HD95 = 6.35 ± 12.33/6.74 ± 11.57 mm), comparable to recent works, although with a smaller training set (n = 30). Inter-rater agreement on the five-level scale was fair to moderate but showed progressive improvement of the segmentation model along with the iterations. We observed limited differences from manually delineated segmentations on the quantitative outcomes (MAD: CSA = 65.2 mm<sup>2</sup>, FF = 1%, water-T1 = 8.4 ms, water-T2 = 0.35 ms), with variability comparable to manual delineations.
Page 2 of 65646 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.