Sort by:
Page 2 of 71702 results

Economic Evaluations and Equity in the Use of Artificial Intelligence in Imaging Examinations for Medical Diagnosis in People With Dermatological, Neurological, and Pulmonary Diseases: Systematic Review.

Santana GO, Couto RM, Loureiro RM, Furriel BCRS, de Paula LGN, Rother ET, de Paiva JPQ, Correia LR

pubmed logopapersAug 13 2025
Health care systems around the world face numerous challenges. Recent advances in artificial intelligence (AI) have offered promising solutions, particularly in diagnostic imaging. This systematic review focused on evaluating the economic feasibility of AI in real-world diagnostic imaging scenarios, specifically for dermatological, neurological, and pulmonary diseases. The central question was whether the use of AI in these diagnostic assessments improves economic outcomes and promotes equity in health care systems. This systematic review has 2 main components, economic evaluation and equity assessment. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) tool to ensure adherence to best practices in systematic reviews. The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews), and we followed the PRISMA-E (Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Equity Extension) guidelines for equity. Scientific articles reporting on economic evaluations or equity considerations related to the use of AI-based tools in diagnostic imaging in dermatology, neurology, or pulmonology were included in the study. The search was conducted in the PubMed, Embase, Scopus, and Web of Science databases. Methodological quality was assessed using the following checklists, CHEC (Consensus on Health Economic Criteria) for economic evaluations, EPHPP (Effective Public Health Practice Project) for equity evaluation studies, and Welte for transferability. The systematic review identified 9 publications within the scope of the research question, with sample sizes ranging from 122 to over 1.3 million participants. The majority of studies addressed economic evaluation (88.9%), with most studies addressing pulmonary diseases (n=6; 66.6%), followed by neurological diseases (n=2; 22.3%), and only 1 (11.1%) study addressing dermatological diseases. These studies had an average quality access of 87.5% on the CHEC checklist. Only 2 studies were found to be transferable to Brazil and other countries with a similar health context. The economic evaluation revealed that 87.5% of studies highlighted the benefits of using AI in dermatology, neurology, and pulmonology, highlighting significant cost-effectiveness outcomes, with the most advantageous being a negative cost-effectiveness ratio of -US $27,580 per QALY (quality-adjusted life year) for melanoma diagnosis, indicating substantial cost savings in this scenario. The only study assessing equity, based on 129,819 radiographic images, identified AI-assisted underdiagnosis, particularly in certain subgroups defined by gender, ethnicity, and socioeconomic status. This review underscores the importance of transparency in the description of AI tools and the representativeness of population subgroups to mitigate health disparities. As AI is rapidly being integrated into health care, detailed assessments are essential to ensure that benefits reach all patients, regardless of sociodemographic factors.

KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging

Valentin Boussot, Jean-Louis Dillenseger

arxiv logopreprintAug 13 2025
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at \href{https://github.com/vboussot/KonfAI}{https://github.com/vboussot/KonfAI}.

Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology

Jonathan Williams Ramirez, Dina Zemlyanker, Lucas Deden-Binder, Rogeny Herisse, Erendira Garcia Pallares, Karthik Gopinath, Harshvardhan Gazula, Christopher Mount, Liana N. Kozanno, Michael S. Marshall, Theresa R. Connors, Matthew P. Frosch, Mark Montine, Derek H. Oakley, Christine L. Mac Donald, C. Dirk Keene, Bradley T. Hyman, Juan Eugenio Iglesias

arxiv logopreprintAug 13 2025
Advances in image registration and machine learning have recently enabled volumetric analysis of \emph{postmortem} brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of \textit{(i)}1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites; and \textit{(ii)}~2,000 synthetic images with randomized contrast and corresponding masks generated from MRI scans for improved generalizability to unseen photographic setups. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels -- including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4~mm, and 95\% Hausdorff distance under 1.60~mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.

A Chain of Diagnosis Framework for Accurate and Explainable Radiology Report Generation

Haibo Jin, Haoxuan Che, Sunan He, Hao Chen

arxiv logopreprintAug 13 2025
Despite the progress of radiology report generation (RRG), existing works face two challenges: 1) The performances in clinical efficacy are unsatisfactory, especially for lesion attributes description; 2) the generated text lacks explainability, making it difficult for radiologists to trust the results. To address the challenges, we focus on a trustworthy RRG model, which not only generates accurate descriptions of abnormalities, but also provides basis of its predictions. To this end, we propose a framework named chain of diagnosis (CoD), which maintains a chain of diagnostic process for clinically accurate and explainable RRG. It first generates question-answer (QA) pairs via diagnostic conversation to extract key findings, then prompts a large language model with QA diagnoses for accurate generation. To enhance explainability, a diagnosis grounding module is designed to match QA diagnoses and generated sentences, where the diagnoses act as a reference. Moreover, a lesion grounding module is designed to locate abnormalities in the image, further improving the working efficiency of radiologists. To facilitate label-efficient training, we propose an omni-supervised learning strategy with clinical consistency to leverage various types of annotations from different datasets. Our efforts lead to 1) an omni-labeled RRG dataset with QA pairs and lesion boxes; 2) a evaluation tool for assessing the accuracy of reports in describing lesion location and severity; 3) extensive experiments to demonstrate the effectiveness of CoD, where it outperforms both specialist and generalist models consistently on two RRG benchmarks and shows promising explainability by accurately grounding generated sentences to QA diagnoses and images.

ES-UNet: efficient 3D medical image segmentation with enhanced skip connections in 3D UNet.

Park M, Oh S, Park J, Jeong T, Yu S

pubmed logopapersAug 13 2025
Deep learning has significantly advanced medical image analysis, particularly in semantic segmentation, which is essential for clinical decisions. However, existing 3D segmentation models, like the traditional 3D UNet, face challenges in balancing computational efficiency and accuracy when processing volumetric medical data. This study aims to develop an improved architecture for 3D medical image segmentation with enhanced learning strategies to improve accuracy and address challenges related to limited training data. We propose ES-UNet, a 3D segmentation architecture that achieves superior segmentation performance while offering competitive efficiency across multiple computational metrics, including memory usage, inference time, and parameter count. The model builds upon the full-scale skip connection design of UNet3+ by integrating channel attention modules into each encoder-to-decoder path and incorporating full-scale deep supervision to enhance multi-resolution feature learning. We further introduce Region Specific Scaling (RSS), a data augmentation method that adaptively applies geometric transformations to annotated regions, and a Dynamically Weighted Dice (DWD) loss to improve the balance between precision and recall. The model was evaluated on the MICCAI HECKTOR dataset, and additional validation was conducted on selected tasks from the Medical Segmentation Decathlon (MSD). On the HECKTOR dataset, ES-UNet achieved a Dice Similarity Coefficient (DSC) of 76.87%, outperforming baseline models including 3D UNet, 3D UNet 3+, nnUNet, and Swin UNETR. Ablation studies showed that RSS and DWD contributed up to 1.22% and 1.06% improvement in DSC, respectively. A sensitivity analysis demonstrated that the chosen scaling range in RSS offered a favorable trade-off between deformation and anatomical plausibility. Cross-dataset evaluation on MSD Heart and Spleen tasks also indicated strong generalization. Computational analysis revealed that ES-UNet achieves superior segmentation performance with moderate computational demands. Specifically, the enhanced skip connection design with lightweight channel attention modules integrated throughout the network architecture enables this favorable balance between high segmentation accuracy and computational efficiency. ES-UNet integrates architectural and algorithmic improvements to achieve robust 3D medical image segmentation. While the framework incorporates established components, its core contributions lie in the optimized skip connection strategy and supporting techniques like RSS and DWD. Future work will explore adaptive scaling strategies and broader validation across diverse imaging modalities.

MMIF-AMIN: Adaptive Loss-Driven Multi-Scale Invertible Dense Network for Multimodal Medical Image Fusion

Tao Luo, Weihua Xu

arxiv logopreprintAug 12 2025
Multimodal medical image fusion (MMIF) aims to integrate images from different modalities to produce a comprehensive image that enhances medical diagnosis by accurately depicting organ structures, tissue textures, and metabolic information. Capturing both the unique and complementary information across multiple modalities simultaneously is a key research challenge in MMIF. To address this challenge, this paper proposes a novel image fusion method, MMIF-AMIN, which features a new architecture that can effectively extract these unique and complementary features. Specifically, an Invertible Dense Network (IDN) is employed for lossless feature extraction from individual modalities. To extract complementary information between modalities, a Multi-scale Complementary Feature Extraction Module (MCFEM) is designed, which incorporates a hybrid attention mechanism, convolutional layers of varying sizes, and Transformers. An adaptive loss function is introduced to guide model learning, addressing the limitations of traditional manually-designed loss functions and enhancing the depth of data mining. Extensive experiments demonstrate that MMIF-AMIN outperforms nine state-of-the-art MMIF methods, delivering superior results in both quantitative and qualitative analyses. Ablation experiments confirm the effectiveness of each component of the proposed method. Additionally, extending MMIF-AMIN to other image fusion tasks also achieves promising performance.

Graph Neural Networks for Realistic Bleeding Prediction in Surgical Simulators.

Kakdas YC, De S, Demirel D

pubmed logopapersAug 12 2025
This study presents a novel approach using graph neural networks to predict the risk of internal bleeding using vessel maps derived from patient CT and MRI scans, aimed at enhancing the realism of surgical simulators for emergency scenarios such as trauma, where rapid detection of internal bleeding can be lifesaving. First, medical images are segmented and converted into graph representations of the vasculature, where nodes represent vessel branching points with spatial coordinates and edges encode vessel features such as length and radius. Due to no existing dataset directly labeling bleeding risks, we calculate the bleeding probability for each vessel node using a physics-based heuristic, peripheral vascular resistance via the Hagen-Poiseuille equation. A graph attention network is then trained to regress these probabilities, effectively learning to predict hemorrhage risk from the graph-structured imaging data. The model is trained using a tenfold cross-validation on a combined dataset of 1708 vessel graphs extracted from four public image datasets (MSD, KiTS, AbdomenCT, CT-ORG) with optimization via the Adam optimizer, mean squared error loss, early stopping, and L2 regularization. Our model achieves a mean R-squared of 0.86, reaching up to 0.9188 in optimal configurations and low mean training and validation losses of 0.0069 and 0.0074, respectively, in predicting bleeding risk, with higher performance on well-connected vascular graphs. Finally, we integrate the trained model into an immersive virtual reality environment to simulate intra-abdominal bleeding scenarios for immersive surgical training. The model demonstrates robust predictive performance despite the inherent sparsity of real-life datasets.

A non-sub-sampled shearlet transform-based deep learning sub band enhancement and fusion method for multi-modal images.

Sengan S, Gugulothu P, Alroobaea R, Webber JL, Mehbodniya A, Yousef A

pubmed logopapersAug 12 2025
Multi-Modal Medical Image Fusion (MMMIF) has become increasingly important in clinical applications, as it enables the integration of complementary information from different imaging modalities to support more accurate diagnosis and treatment planning. The primary objective of Medical Image Fusion (MIF) is to generate a fused image that retains the most informative features from the Source Images (SI), thereby enhancing the reliability of clinical decision-making systems. However, due to inherent limitations in individual imaging modalities-such as poor spatial resolution in functional images or low contrast in anatomical scans-fused images can suffer from information degradation or distortion. To address these limitations, this study proposes a novel fusion framework that integrates the Non-Subsampled Shearlet Transform (NSST) with a Convolutional Neural Network (CNN) for effective sub-band enhancement and image reconstruction. Initially, each source image is decomposed into Low-Frequency Coefficients (LFC) and multiple High-Frequency Coefficients (HFC) using NSST. The proposed Concurrent Denoising and Enhancement Network (CDEN) is then applied to these sub-bands to suppress noise and enhance critical structural details. The enhanced LFCs are fused using an AlexNet-based activity-level fusion model, while the enhanced HFCs are combined using a Pulse Coupled Neural Network (PCNN) guided by a Novel Sum-Modified Laplacian (NSML) metric. Finally, the fused image is reconstructed via Inverse-NSST (I-NSST). Experimental results prove that the proposed method outperforms existing fusion algorithms, achieving approximately 16.5% higher performance in terms of the QAB/F (edge preservation) metric, along with strong results across both subjective visual assessments and objective quality indices.

18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Jiang Z, Low J, Huang C, Yue Y, Njeh C, Oderinde O

pubmed logopapersAug 11 2025
Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer. In this study, we developed deep radiomic models to enhance the prediction of chemotherapy response after the first treatment cycle. 18F-Fludeoxyglucose PET/CT imaging data and clinical record from 60 breast cancer patients were retrospectively obtained from the Cancer Imaging Archive. PET/CT scans were conducted at three distinct stages of treatment; prior to the initiation of chemotherapy (T1), following the first cycle of chemotherapy (T2), and after the full chemotherapy regimen (T3). The patient's primary gross tumor volume (GTV) was delineated on PET images using a 40% threshold of the maximum standardized uptake value (SUVmax). Radiomic features were extracted from the GTV based on the PET/CT images. In addition, a squeeze-and-excitation network (SENet) deep learning model was employed to generate additional features from the PET/CT images for combined analysis. A XGBoost machine learning model was developed and compared with the conventional machine learning algorithm [random forest (RF), logistic regression (LR) and support vector machine (SVM)]. The performance of each model was assessed using receiver operating characteristics area under the curve (ROC AUC) analysis, and prediction accuracy in a validation cohort. Model performance was evaluated through fivefold cross-validation on the entire cohort, with data splits stratified by treatment response categories to ensure balanced representation. The AUC values for the machine learning models using only radiomic features were 0.85(XGBoost), 0.76 (RF), 0.80 (LR), and 0.59 (SVM), with XGBoost showing the best performance. After incorporating additional deep learning-derived features from SENet, the AUC values increased to 0.92, 0.88, 0.90, and 0.61, respectively, demonstrating significant improvements in predictive accuracy. Predictions were based on pre-treatment (T1) and post-first-cycle (T2) imaging data, enabling early assessment of chemotherapy response after the initial treatment cycle. Integrating deep learning-derived features significantly enhanced the performance of predictive models for chemotherapy response in breast cancer patients. This study demonstrated the superior predictive capability of the XGBoost model, emphasizing its potential to optimize personalized therapeutic strategies by accurately identifying patients unlikely to respond to chemotherapy after the first treatment cycle.

MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer

Tao Tang, Chengxu Yang

arxiv logopreprintAug 11 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.
Page 2 of 71702 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.