Sort by:
Page 2 of 39382 results

Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection.

Tushar FI, Vancoillie L, McCabe C, Kavuri A, Dahal L, Harrawood B, Fryling M, Zarei M, Sotoudeh-Paima S, Ho FC, Ghosh D, Harowicz MR, Tailor TD, Luo S, Segars WP, Abadi E, Lafata KJ, Lo JY, Samei E

pubmed logopapersJul 1 2025
Clinical imaging trials play a crucial role in advancing medical innovation but are often costly, inefficient, and ethically constrained. Virtual Imaging Trials (VITs) present a solution by simulating clinical trial components in a controlled, risk-free environment. The Virtual Lung Screening Trial (VLST), an in silico study inspired by the National Lung Screening Trial (NLST), illustrates the potential of VITs to expedite clinical trials, minimize risks to participants, and promote optimal use of imaging technologies in healthcare. This study aimed to show that a virtual imaging trial platform could investigate some key elements of a major clinical trial, specifically the NLST, which compared Computed tomography (CT) and chest radiography (CXR) for lung cancer screening. With simulated cancerous lung nodules, a virtual patient cohort of 294 subjects was created using XCAT human models. Each virtual patient underwent both CT and CXR imaging, with deep learning models, the AI CT-Reader and AI CXR-Reader, acting as virtual readers to perform recall patients with suspicion of lung cancer. The primary outcome was the difference in diagnostic performance between CT and CXR, measured by the Area Under the Curve (AUC). The AI CT-Reader showed superior diagnostic accuracy, achieving an AUC of 0.92 (95 % CI: 0.90-0.95) compared to the AI CXR-Reader's AUC of 0.72 (95 % CI: 0.67-0.77). Furthermore, at the same 94 % CT sensitivity reported by the NLST, the VLST specificity of 73 % was similar to the NLST specificity of 73.4 %. This CT performance highlights the potential of VITs to replicate certain aspects of clinical trials effectively, paving the way toward a safe and efficient method for advancing imaging-based diagnostics.

Integrated brain connectivity analysis with fMRI, DTI, and sMRI powered by interpretable graph neural networks.

Qu G, Zhou Z, Calhoun VD, Zhang A, Wang YP

pubmed logopapersJul 1 2025
Multimodal neuroimaging data modeling has become a widely used approach but confronts considerable challenges due to their heterogeneity, which encompasses variability in data types, scales, and formats across modalities. This variability necessitates the deployment of advanced computational methods to integrate and interpret diverse datasets within a cohesive analytical framework. In our research, we combine functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and structural MRI (sMRI) for joint analysis. This integration capitalizes on the unique strengths of each modality and their inherent interconnections, aiming for a comprehensive understanding of the brain's connectivity and anatomical characteristics. Utilizing the Glasser atlas for parcellation, we integrate imaging-derived features from multiple modalities - functional connectivity from fMRI, structural connectivity from DTI, and anatomical features from sMRI - within consistent regions. Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating an amalgamation of multimodal imaging data. This technique enhances interpretability at the connectivity level, transcending traditional analyses centered on singular regional attributes. The model is applied to the Human Connectome Project's Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth. The analysis demonstrates improved prediction accuracy and uncovers crucial anatomical features and neural connections, deepening our understanding of brain structure and function. This study not only advances multimodal neuroimaging analytics by offering a novel method for integrative analysis of diverse imaging modalities but also improves the understanding of intricate relationships between brain's structural and functional networks and cognitive development.

MDAL: Modality-difference-based active learning for multimodal medical image analysis via contrastive learning and pointwise mutual information.

Wang H, Jin Q, Du X, Wang L, Guo Q, Li H, Wang M, Song Z

pubmed logopapersJul 1 2025
Multimodal medical images reveal different characteristics of the same anatomy or lesion, offering significant clinical value. Deep learning has achieved widespread success in medical image analysis with large-scale labeled datasets. However, annotating medical images is expensive and labor-intensive for doctors, and the variations between different modalities further increase the annotation cost for multimodal images. This study aims to minimize the annotation cost for multimodal medical image analysis. We proposes a novel active learning framework MDAL based on modality differences for multimodal medical images. MDAL quantifies the sample-wise modality differences through pointwise mutual information estimated by multimodal contrastive learning. We hypothesize that samples with larger modality differences are more informative for annotation and further propose two sampling strategies based on these differences: MaxMD and DiverseMD. Moreover, MDAL could select informative samples in one shot without initial labeled data. We evaluated MDAL on public brain glioma and meningioma segmentation datasets and an in-house ovarian cancer classification dataset. MDAL outperforms other advanced active learning competitors. Besides, when using only 20%, 20%, and 15% of labeled samples in these datasets, MDAL reaches 99.6%, 99.9%, and 99.3% of the performance of supervised training with full labeled dataset, respectively. The results show that our proposed MDAL could significantly reduce the annotation cost for multimodal medical image analysis. We expect MDAL could be further extended to other multimodal medical data for lower annotation costs.

MedScale-Former: Self-guided multiscale transformer for medical image segmentation.

Karimijafarbigloo S, Azad R, Kazerouni A, Merhof D

pubmed logopapersJul 1 2025
Accurate medical image segmentation is crucial for enabling automated clinical decision procedures. However, existing supervised deep learning methods for medical image segmentation face significant challenges due to their reliance on extensive labeled training data. To address this limitation, our novel approach introduces a dual-branch transformer network operating on two scales, strategically encoding global contextual dependencies while preserving local information. To promote self-supervised learning, our method leverages semantic dependencies between different scales, generating a supervisory signal for inter-scale consistency. Additionally, it incorporates a spatial stability loss within each scale, fostering self-supervised content clustering. While intra-scale and inter-scale consistency losses enhance feature uniformity within clusters, we introduce a cross-entropy loss function atop the clustering score map to effectively model cluster distributions and refine decision boundaries. Furthermore, to account for pixel-level similarities between organ or lesion subpixels, we propose a selective kernel regional attention module as a plug and play component. This module adeptly captures and outlines organ or lesion regions, slightly enhancing the definition of object boundaries. Our experimental results on skin lesion, lung organ, and multiple myeloma plasma cell segmentation tasks demonstrate the superior performance of our method compared to state-of-the-art approaches.

A systematic review of generative AI approaches for medical image enhancement: Comparing GANs, transformers, and diffusion models.

Oulmalme C, Nakouri H, Jaafar F

pubmed logopapersJul 1 2025
Medical imaging is a vital diagnostic tool that provides detailed insights into human anatomy but faces challenges affecting its accuracy and efficiency. Advanced generative AI models offer promising solutions. Unlike previous reviews with a narrow focus, a comprehensive evaluation across techniques and modalities is necessary. This systematic review integrates the three state-of-the-art leading approaches, GANs, Diffusion Models, and Transformers, examining their applicability, methodologies, and clinical implications in improving medical image quality. Using the PRISMA framework, 63 studies from 989 were selected via Google Scholar and PubMed, focusing on GANs, Transformers, and Diffusion Models. Articles from ACM, IEEE Xplore, and Springer were analyzed. Generative AI techniques show promise in improving image resolution, reducing noise, and enhancing fidelity. GANs generate high-quality images, Transformers utilize global context, and Diffusion Models are effective in denoising and reconstruction. Challenges include high computational costs, limited dataset diversity, and issues with generalizability, with a focus on quantitative metrics over clinical applicability. This review highlights the transformative impact of GANs, Transformers, and Diffusion Models in advancing medical imaging. Future research must address computational and generalization challenges, emphasize open science, and validate these techniques in diverse clinical settings to unlock their full potential. These efforts could enhance diagnostic accuracy, lower costs, and improve patient outcome.

Uncertainty-aware deep learning for segmentation of primary tumor and pathologic lymph nodes in oropharyngeal cancer: Insights from a multi-center cohort.

De Biase A, Sijtsema NM, van Dijk LV, Steenbakkers R, Langendijk JA, van Ooijen P

pubmed logopapersJul 1 2025
Information on deep learning (DL) tumor segmentation accuracy on a voxel and a structure level is essential for clinical introduction. In a previous study, a DL model was developed for oropharyngeal cancer (OPC) primary tumor (PT) segmentation in PET/CT images and voxel-level predicted probabilities (TPM) quantifying model certainty were introduced. This study extended the network to simultaneously generate TPMs for PT and pathologic lymph nodes (PL) and explored whether structure-level uncertainty in TPMs predicts segmentation model accuracy in an independent external cohort. We retrospectively gathered PET/CT images and manual delineations of gross tumor volume of the PT (GTVp) and PL (GTVln) of 407 OPC patients treated with (chemo)radiation in our institute. The HECKTOR 2022 challenge dataset served as external test set. The pre-existing architecture was modified for multi-label segmentation. Multiple models were trained, and the non-binarized ensemble average of TPMs was considered per patient. Segmentation accuracy was quantified by surface and aggregate DSC, model uncertainty by coefficient of variation (CV) of multiple predictions. Predicted GTVp and GTVln segmentations in the external test achieved 0.75 and 0.70 aggregate DSC. Patient-specific CV and surface DSC showed a significant correlation for both structures (-0.54 and -0.66 for GTVp and GTVln) in the external set, indicating significant calibration. Significant accuracy versus uncertainty calibration was achieved for TPMs in both internal and external test sets, indicating the potential use of quantified uncertainty from TPMs to identify cases with lower GTVp and GTVln segmentation accuracy, independently of the dataset.

Worldwide research trends on artificial intelligence in head and neck cancer: a bibliometric analysis.

Silvestre-Barbosa Y, Castro VT, Di Carvalho Melo L, Reis PED, Leite AF, Ferreira EB, Guerra ENS

pubmed logopapersJul 1 2025
This bibliometric analysis aims to explore scientific data on Artificial Intelligence (AI) and Head and Neck Cancer (HNC). AI-related HNC articles from the Web of Science Core Collection were searched. VosViewer and Biblioshiny/Bibiometrix for R Studio were used for data synthesis. This analysis covered key characteristics such as sources, authors, affiliations, countries, citations and top cited articles, keyword analysis, and trending topics. A total of 1,019 papers from 1995 to 2024 were included. Among them, 71.6% were original research articles, 7.6% were reviews, and 20.8% took other forms. The fifty most cited documents highlighted radiology as the most explored specialty, with an emphasis on deep learning models for segmentation. The publications have been increasing, with an annual growth rate of 94.4% after 2016. Among the 20 most productive countries, 14 are high-income economies. The keywords of strong citation revealed 2 main clusters: radiomics and radiotherapy. The most frequently keywords include machine learning, deep learning, artificial intelligence, and head and neck cancer, with recent emphasis on diagnosis, survival prediction, and histopathology. There has been an increase in the use of AI in HNC research since 2016 and indicated a notable disparity in publication quantity between high-income and low/middle-income countries. Future research should prioritize clinical validation and standardization to facilitate the integration of AI in HNC management, particularly in underrepresented regions.

Optimizing imaging modalities for sarcoma subtypes in radiation therapy: State of the art.

Beddok A, Kaur H, Khurana S, Dercle L, El Ayachi R, Jouglar E, Mammar H, Mahe M, Najem E, Rozenblum L, Thariat J, El Fakhri G, Helfre S

pubmed logopapersJul 1 2025
The choice of imaging modalities is essential in sarcoma management, as different techniques provide complementary information depending on tumor subtype and anatomical location. This narrative review examines the role of imaging in sarcoma characterization and treatment planning, particularly in the context of radiation therapy (RT). Magnetic resonance imaging (MRI) provides superior soft tissue contrast, enabling detailed assessment of tumor extent and peritumoral involvement. Computed tomography (CT) is particularly valuable for detecting osseous involvement, periosteal reactions, and calcifications, complementing MRI in sarcomas involving bone or calcified lesions. The combination of MRI and CT enhances tumor delineation, particularly for complex sites such as retroperitoneal and uterine sarcomas, where spatial relationships with adjacent organs are critical. In vascularized sarcomas, such as alveolar soft-part sarcomas, the integration of MRI with CT or MR angiography facilitates accurate mapping of tumor margins. Positron emission tomography with [18 F]-fluorodeoxyglucose ([18 F]-FDG PET) provides functional insights, identifying metabolically active regions within tumors to guide dose escalation. Although its role in routine staging is limited, [18 F]-FDG PET and emerging PET tracers offer promise for refining RT planning. Advances in artificial intelligence further enhance imaging precision, enabling more accurate contouring and treatment optimization. This review highlights how the integration of imaging modalities, tailored to specific sarcoma subtypes, supports precise RT delivery while minimizing damage to surrounding tissues. These strategies underline the importance of multidisciplinary approaches in improving sarcoma management and outcomes through multi-image-based RT planning.

SpineMamba: Enhancing 3D spinal segmentation in clinical imaging through residual visual Mamba layers and shape priors.

Zhang Z, Liu T, Fan G, Li N, Li B, Pu Y, Feng Q, Zhou S

pubmed logopapersJul 1 2025
Accurate segmentation of three-dimensional (3D) clinical medical images is critical for the diagnosis and treatment of spinal diseases. However, the complexity of spinal anatomy and the inherent uncertainties of current imaging technologies pose significant challenges for the semantic segmentation of spinal images. Although convolutional neural networks (CNNs) and Transformer-based models have achieved remarkable progress in spinal segmentation, their limitations in modeling long-range dependencies hinder further improvements in segmentation accuracy. To address these challenges, we propose a novel framework, SpineMamba, which incorporates a residual visual Mamba layer capable of effectively capturing and modeling the deep semantic features and long-range spatial dependencies in 3D spinal data. To further enhance the structural semantic understanding of the vertebrae, we also propose a novel spinal shape prior module that captures specific anatomical information about the spine from medical images, significantly enhancing the model's ability to extract structural semantic information of the vertebrae. Extensive comparative and ablation experiments across three datasets demonstrate that SpineMamba outperforms existing state-of-the-art models. On two computed tomography (CT) datasets, the average Dice similarity coefficients achieved are 94.40±4% and 88.28±3%, respectively, while on a magnetic resonance (MR) dataset, the model achieves a Dice score of 86.95±10%. Notably, SpineMamba surpasses the widely recognized nnU-Net in segmentation accuracy, with a maximum improvement of 3.63 percentage points. These results highlight the precision, robustness, and exceptional generalization capability of SpineMamba.

Evaluation of radiology residents' reporting skills using large language models: an observational study.

Atsukawa N, Tatekawa H, Oura T, Matsushita S, Horiuchi D, Takita H, Mitsuyama Y, Omori A, Shimono T, Miki Y, Ueda D

pubmed logopapersJul 1 2025
Large language models (LLMs) have the potential to objectively evaluate radiology resident reports; however, research on their use for feedback in radiology training and assessment of resident skill development remains limited. This study aimed to assess the effectiveness of LLMs in revising radiology reports by comparing them with reports verified by board-certified radiologists and to analyze the progression of resident's reporting skills over time. To identify the LLM that best aligned with human radiologists, 100 reports were randomly selected from 7376 reports authored by nine first-year radiology residents. The reports were evaluated based on six criteria: (1) addition of missing positive findings, (2) deletion of findings, (3) addition of negative findings, (4) correction of the expression of findings, (5) correction of the diagnosis, and (6) proposal of additional examinations or treatments. Reports were segmented into four time-based terms, and 900 reports (450 CT and 450 MRI) were randomly chosen from the initial and final terms of the residents' first year. The revised rates for each criterion were compared between the first and last terms using the Wilcoxon Signed-Rank test. Among the three LLMs-ChatGPT-4 Omni (GPT-4o), Claude-3.5 Sonnet, and Claude-3 Opus-GPT-4o demonstrated the highest level of agreement with board-certified radiologists. Significant improvements were noted in Criteria 1-3 when comparing reports from the first and last terms (Criteria 1, 2, and 3; P < 0.001, P = 0.023, and P = 0.004, respectively) using GPT-4o. No significant changes were observed for Criteria 4-6. Despite this, all criteria except for Criteria 6 showed progressive enhancement over time. LLMs can effectively provide feedback on commonly corrected areas in radiology reports, enabling residents to objectively identify and improve their weaknesses and monitor their progress. Additionally, LLMs may help reduce the workload of radiologists' mentors.
Page 2 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.