Sort by:
Page 2 of 876 results

Reference-Guided Diffusion Inpainting For Multimodal Counterfactual Generation

Alexandru Buburuzan

arxiv logopreprintJul 30 2025
Safety-critical applications, such as autonomous driving and medical image analysis, require extensive multimodal data for rigorous testing. Synthetic data methods are gaining prominence due to the cost and complexity of gathering real-world data, but they demand a high degree of realism and controllability to be useful. This work introduces two novel methods for synthetic data generation in autonomous driving and medical image analysis, namely MObI and AnydoorMed, respectively. MObI is a first-of-its-kind framework for Multimodal Object Inpainting that leverages a diffusion model to produce realistic and controllable object inpaintings across perceptual modalities, demonstrated simultaneously for camera and lidar. Given a single reference RGB image, MObI enables seamless object insertion into existing multimodal scenes at a specified 3D location, guided by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, this approach uses 3D bounding box conditioning to ensure accurate spatial positioning and realistic scaling. AnydoorMed extends this paradigm to the medical imaging domain, focusing on reference-guided inpainting for mammography scans. It leverages a diffusion-based model to inpaint anomalies with impressive detail preservation, maintaining the reference anomaly's structural integrity while semantically blending it with the surrounding tissue. Together, these methods demonstrate that foundation models for reference-guided inpainting in natural images can be readily adapted to diverse perceptual modalities, paving the way for the next generation of systems capable of constructing highly realistic, controllable and multimodal counterfactual scenarios.

Risk inventory and mitigation actions for AI in medical imaging-a qualitative study of implementing standalone AI for screening mammography.

Gerigoorian A, Kloub M, Dembrower K, Engwall M, Strand F

pubmed logopapersJul 30 2025
Recent prospective studies have shown that AI may be integrated in double-reader settings to increase cancer detection. The ScreenTrustCAD study was conducted at the breast radiology department at the Capio S:t Göran Hospital where AI is now implemented in clinical practice. This study reports on how the hospital prepared by exploring risks from an enterprise risk management perspective, i.e., applying a holistic and proactive perspective, and developed risk mitigation actions. The study was conducted as an integral part of the preparations before implementing AI in a breast imaging department. Collaborative ideation sessions were conducted with personnel at the hospital, either directly or indirectly involved with AI, to identify risks. Two external experts with competencies in cybersecurity, machine learning, and the ethical aspects of AI, were interviewed as a complement. The risks identified were analyzed according to an Enterprise Risk Management framework, adopted for healthcare, that assumes risks to be emerging from eight different domains. Finally, appropriate risk mitigation actions were identified and discussed. Twenty-three risks were identified covering seven of eight risk domains, in turn generating 51 suggested risk mitigation actions. Not only does the study indicate the emergence of patient safety risks, but it also shows that there are operational, strategic, financial, human capital, legal, and technological risks. The risks with most suggested mitigation actions were ‘Radiographers unable to answer difficult questions from patients’, ‘Increased risk that patient-reported symptoms are missed by the single radiologist’, ‘Increased pressure on the single reader knowing they are the only radiologist to catch a mistake by AI’, and ‘The performance of the AI algorithm might deteriorate’. Before a clinical integration of AI, hospitals should expand, identify, and address risks beyond immediate patient safety by applying comprehensive and proactive risk management. The online version contains supplementary material available at 10.1186/s12913-025-13176-9.

Radiomics meets transformers: A novel approach to tumor segmentation and classification in mammography for breast cancer.

Saadh MJ, Hussain QM, Albadr RJ, Doshi H, Rekha MM, Kundlas M, Pal A, Rizaev J, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA, Farhood B

pubmed logopapersJul 29 2025
ObjectiveThis study aimed to develop a robust framework for breast cancer diagnosis by integrating advanced segmentation and classification approaches. Transformer-based and U-Net segmentation models were combined with radiomic feature extraction and machine learning classifiers to improve segmentation precision and classification accuracy in mammographic images.Materials and MethodsA multi-center dataset of 8000 mammograms (4200 normal, 3800 abnormal) was used. Segmentation was performed using Transformer-based and U-Net models, evaluated through Dice Coefficient (DSC), Intersection over Union (IoU), Hausdorff Distance (HD95), and Pixel-Wise Accuracy. Radiomic features were extracted from segmented masks, with Recursive Feature Elimination (RFE) and Analysis of Variance (ANOVA) employed to select significant features. Classifiers including Logistic Regression, XGBoost, CatBoost, and a Stacking Ensemble model were applied to classify tumors into benign or malignant. Classification performance was assessed using accuracy, sensitivity, F1 score, and AUC-ROC. SHAP analysis validated feature importance, and Q-value heatmaps evaluated statistical significance.ResultsThe Transformer-based model achieved superior segmentation results with DSC (0.94 ± 0.01 training, 0.92 ± 0.02 test), IoU (0.91 ± 0.01 training, 0.89 ± 0.02 test), HD95 (3.0 ± 0.3 mm training, 3.3 ± 0.4 mm test), and Pixel-Wise Accuracy (0.96 ± 0.01 training, 0.94 ± 0.02 test), consistently outperforming U-Net across all metrics. For classification, Transformer-segmented features with the Stacking Ensemble achieved the highest test results: 93% accuracy, 92% sensitivity, 93% F1 score, and 95% AUC. U-Net-segmented features achieved lower metrics, with the best test accuracy at 84%. SHAP analysis confirmed the importance of features like Gray-Level Non-Uniformity and Zone Entropy.ConclusionThis study demonstrates the superiority of Transformer-based segmentation integrated with radiomic feature selection and robust classification models. The framework provides a precise and interpretable solution for breast cancer diagnosis, with potential for scalability to 3D imaging and multimodal datasets.

Hybrid Deep Learning and Handcrafted Feature Fusion for Mammographic Breast Cancer Classification

Maximilian Tschuchnig, Michael Gadermayr, Khalifa Djemal

arxiv logopreprintJul 26 2025
Automated breast cancer classification from mammography remains a significant challenge due to subtle distinctions between benign and malignant tissue. In this work, we present a hybrid framework combining deep convolutional features from a ResNet-50 backbone with handcrafted descriptors and transformer-based embeddings. Using the CBIS-DDSM dataset, we benchmark our ResNet-50 baseline (AUC: 78.1%) and demonstrate that fusing handcrafted features with deep ResNet-50 and DINOv2 features improves AUC to 79.6% (setup d1), with a peak recall of 80.5% (setup d1) and highest F1 score of 67.4% (setup d1). Our experiments show that handcrafted features not only complement deep representations but also enhance performance beyond transformer-based embeddings. This hybrid fusion approach achieves results comparable to state-of-the-art methods while maintaining architectural simplicity and computational efficiency, making it a practical and effective solution for clinical decision support.

Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model

Xin Li, Kaixiang Yang, Qiang Li, Zhiwei Wang

arxiv logopreprintJul 25 2025
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/

Exploring the interplay of label bias with subgroup size and separability: A case study in mammographic density classification

Emma A. M. Stanley, Raghav Mehta, Mélanie Roschewitz, Nils D. Forkert, Ben Glocker

arxiv logopreprintJul 24 2025
Systematic mislabelling affecting specific subgroups (i.e., label bias) in medical imaging datasets represents an understudied issue concerning the fairness of medical AI systems. In this work, we investigated how size and separability of subgroups affected by label bias influence the learned features and performance of a deep learning model. Therefore, we trained deep learning models for binary tissue density classification using the EMory BrEast imaging Dataset (EMBED), where label bias affected separable subgroups (based on imaging manufacturer) or non-separable "pseudo-subgroups". We found that simulated subgroup label bias led to prominent shifts in the learned feature representations of the models. Importantly, these shifts within the feature space were dependent on both the relative size and the separability of the subgroup affected by label bias. We also observed notable differences in subgroup performance depending on whether a validation set with clean labels was used to define the classification threshold for the model. For instance, with label bias affecting the majority separable subgroup, the true positive rate for that subgroup fell from 0.898, when the validation set had clean labels, to 0.518, when the validation set had biased labels. Our work represents a key contribution toward understanding the consequences of label bias on subgroup fairness in medical imaging AI.

Mammo-Mamba: A Hybrid State-Space and Transformer Architecture with Sequential Mixture of Experts for Multi-View Mammography

Farnoush Bayatmakou, Reza Taleei, Nicole Simone, Arash Mohammadi

arxiv logopreprintJul 23 2025
Breast cancer (BC) remains one of the leading causes of cancer-related mortality among women, despite recent advances in Computer-Aided Diagnosis (CAD) systems. Accurate and efficient interpretation of multi-view mammograms is essential for early detection, driving a surge of interest in Artificial Intelligence (AI)-powered CAD models. While state-of-the-art multi-view mammogram classification models are largely based on Transformer architectures, their computational complexity scales quadratically with the number of image patches, highlighting the need for more efficient alternatives. To address this challenge, we propose Mammo-Mamba, a novel framework that integrates Selective State-Space Models (SSMs), transformer-based attention, and expert-driven feature refinement into a unified architecture. Mammo-Mamba extends the MambaVision backbone by introducing the Sequential Mixture of Experts (SeqMoE) mechanism through its customized SecMamba block. The SecMamba is a modified MambaVision block that enhances representation learning in high-resolution mammographic images by enabling content-adaptive feature refinement. These blocks are integrated into the deeper stages of MambaVision, allowing the model to progressively adjust feature emphasis through dynamic expert gating, effectively mitigating the limitations of traditional Transformer models. Evaluated on the CBIS-DDSM benchmark dataset, Mammo-Mamba achieves superior classification performance across all key metrics while maintaining computational efficiency.

A Hybrid CNN-VSSM model for Multi-View, Multi-Task Mammography Analysis: Robust Diagnosis with Attention-Based Fusion

Yalda Zafari, Roaa Elalfy, Mohamed Mabrok, Somaya Al-Maadeed, Tamer Khattab, Essam A. Rashed

arxiv logopreprintJul 22 2025
Early and accurate interpretation of screening mammograms is essential for effective breast cancer detection, yet it remains a complex challenge due to subtle imaging findings and diagnostic ambiguity. Many existing AI approaches fall short by focusing on single view inputs or single-task outputs, limiting their clinical utility. To address these limitations, we propose a novel multi-view, multitask hybrid deep learning framework that processes all four standard mammography views and jointly predicts diagnostic labels and BI-RADS scores for each breast. Our architecture integrates a hybrid CNN VSSM backbone, combining convolutional encoders for rich local feature extraction with Visual State Space Models (VSSMs) to capture global contextual dependencies. To improve robustness and interpretability, we incorporate a gated attention-based fusion module that dynamically weights information across views, effectively handling cases with missing data. We conduct extensive experiments across diagnostic tasks of varying complexity, benchmarking our proposed hybrid models against baseline CNN architectures and VSSM models in both single task and multi task learning settings. Across all tasks, the hybrid models consistently outperform the baselines. In the binary BI-RADS 1 vs. 5 classification task, the shared hybrid model achieves an AUC of 0.9967 and an F1 score of 0.9830. For the more challenging ternary classification, it attains an F1 score of 0.7790, while in the five-class BI-RADS task, the best F1 score reaches 0.4904. These results highlight the effectiveness of the proposed hybrid framework and underscore both the potential and limitations of multitask learning for improving diagnostic performance and enabling clinically meaningful mammography analysis.

Mammo-SAE: Interpreting Breast Cancer Concept Learning with Sparse Autoencoders

Krishna Kanth Nakka

arxiv logopreprintJul 21 2025
Interpretability is critical in high-stakes domains such as medical imaging, where understanding model decisions is essential for clinical adoption. In this work, we introduce Sparse Autoencoder (SAE)-based interpretability to breast imaging by analyzing {Mammo-CLIP}, a vision--language foundation model pretrained on large-scale mammogram image--report pairs. We train a patch-level \texttt{Mammo-SAE} on Mammo-CLIP to identify and probe latent features associated with clinically relevant breast concepts such as \textit{mass} and \textit{suspicious calcification}. Our findings reveal that top activated class level latent neurons in the SAE latent space often tend to align with ground truth regions, and also uncover several confounding factors influencing the model's decision-making process. Additionally, we analyze which latent neurons the model relies on during downstream finetuning for improving the breast concept prediction. This study highlights the promise of interpretable SAE latent representations in providing deeper insight into the internal workings of foundation models at every layer for breast imaging.

Results from a Swedish model-based analysis of the cost-effectiveness of AI-assisted digital mammography.

Lyth J, Gialias P, Husberg M, Bernfort L, Bjerner T, Wiberg MK, Levin LÅ, Gustafsson H

pubmed logopapersJul 19 2025
To evaluate the cost-effectiveness of AI-assisted digital mammography (AI-DM) compared to conventional biennial breast cancer digital mammography screening (cDM) with double reading of screening mammograms, and to investigate the change in cost-effectiveness based on four different sub-strategies of AI-DM. A decision-analytic state-transition Markov model was used to analyse the decision of whether to use cDM or AI-DM in breast cancer screening. In this Markov model, one-year cycles were used, and the analysis was performed from a healthcare perspective with a lifetime horizon. In the model, we analysed 1000 hypothetical individuals attending mammography screenings assessed with AI-DM compared with 1000 hypothetical individuals assessed with cDM. The total costs, including both screening-related costs and breast cancer-related costs, were €3,468,967 and €3,528,288 for AI-DM and cDM, respectively. AI-DM resulted in a cost saving of €59,320 compared to cDM. Per 1000 individuals, AI-DM gained 10.8 quality-adjusted life years (QALYs) compared to cDM. Gained QALYs at a lower cost means that the AI-DM screening strategy was dominant compared to cDM. Break-even occurred at the second screening at age 42 years. This analysis showed that AI-assisted mammography for biennial breast cancer screening in a Swedish population of women aged 40-74 years is a cost-saving strategy compared to a conventional strategy using double human screen reading. Further clinical studies are needed, as scenario analyses showed that other strategies, more dependent on AI, are also cost-saving. Question To evaluate the cost-effectiveness of AI-DM in comparison to conventional biennial breast cDM screening. Findings AI-DM is cost-effective, and the break-even point occurred at the second screening at age 42 years. Clinical relevance The implementation of AI is clearly cost-effective as it reduces the total cost for the healthcare system and simultaneously results in a gain in QALYs.
Page 2 of 876 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.