Sort by:
Page 2 of 3293286 results

Robust evaluation of tissue-specific radiomic features for classifying breast tissue density grades.

Dong V, Mankowski W, Silva Filho TM, McCarthy AM, Kontos D, Maidment ADA, Barufaldi B

pubmed logopapersNov 1 2025
Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability. We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>I</mi></mrow> </msub> <mo>=</mo> <mn>651</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>II</mi></mrow> </msub> <mo>=</mo> <mn>100</mn></mrow> </math> ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes. LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>A</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.909</mn> <mo>±</mo> <mn>0.032</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>B</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.858</mn> <mo>±</mo> <mn>0.027</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>C</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.927</mn> <mo>±</mo> <mn>0.013</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.890</mn> <mo>±</mo> <mn>0.089</mn></mrow> </math> ] and an AUC of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.936</mn> <mo>±</mo> <mn>0.016</mn></mrow> </math> for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>A</mi></mrow> </math> : 0.880, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>B</mi></mrow> </math> : 0.779, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>C</mi></mrow> </math> : 0.878, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi></mrow> </math> : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades. Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.

Breast tumor diagnosis via multimodal deep learning using ultrasound B-mode and Nakagami images.

Muhtadi S, Gallippi CM

pubmed logopapersNov 1 2025
We propose and evaluate multimodal deep learning (DL) approaches that combine ultrasound (US) B-mode and Nakagami parametric images for breast tumor classification. It is hypothesized that integrating tissue brightness information from B-mode images with scattering properties from Nakagami images will enhance diagnostic performance compared with single-input approaches. An EfficientNetV2B0 network was used to develop multimodal DL frameworks that took as input (i) numerical two-dimensional (2D) maps or (ii) rendered red-green-blue (RGB) representations of both B-mode and Nakagami data. The diagnostic performance of these frameworks was compared with single-input counterparts using 831 US acquisitions from 264 patients. In addition, gradient-weighted class activation mapping was applied to evaluate diagnostically relevant information utilized by the different networks. The multimodal architectures demonstrated significantly higher area under the receiver operating characteristic curve (AUC) values ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ) than their monomodal counterparts, achieving an average improvement of 10.75%. In addition, the multimodal networks incorporated, on average, 15.70% more diagnostically relevant tissue information. Among the multimodal models, those using RGB representations as input outperformed those that utilized 2D numerical data maps ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ). The top-performing multimodal architecture achieved a mean AUC of 0.896 [95% confidence interval (CI): 0.813 to 0.959] when performance was assessed at the image level and 0.848 (95% CI: 0.755 to 0.903) when assessed at the lesion level. Incorporating B-mode and Nakagami information together in a multimodal DL framework improved classification outcomes and increased the amount of diagnostically relevant information accessed by networks, highlighting the potential for automating and standardizing US breast cancer diagnostics to enhance clinical outcomes.

Analysis of intra- and inter-observer variability in 4D liver ultrasound landmark labeling.

Wulff D, Ernst F

pubmed logopapersSep 1 2025
Four-dimensional (4D) ultrasound imaging is widely used in clinics for diagnostics and therapy guidance. Accurate target tracking in 4D ultrasound is crucial for autonomous therapy guidance systems, such as radiotherapy, where precise tumor localization ensures effective treatment. Supervised deep learning approaches rely on reliable ground truth, making accurate labels essential. We investigate the reliability of expert-labeled ground truth data by evaluating intra- and inter-observer variability in landmark labeling for 4D ultrasound imaging in the liver. Eight 4D liver ultrasound sequences were labeled by eight expert observers, each labeling eight landmarks three times. Intra- and inter-observer variability was quantified, and observer survey and motion analysis were conducted to determine factors influencing labeling accuracy, such as ultrasound artifacts and motion amplitude. The mean intra-observer variability ranged from <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1.58</mn> <mtext>  </mtext> <mi>mm</mi> <mo>±</mo> <mn>0.90</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2.05</mn> <mtext>  </mtext> <mi>mm</mi> <mo>±</mo> <mn>1.22</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> depending on the observer. The inter-observer variability for the two observer groups was <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2.68</mn> <mtext>  </mtext> <mi>mm</mi> <mo>±</mo> <mn>1.69</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>3.06</mn> <mtext>  </mtext> <mi>mm</mi> <mo>±</mo> <mn>1.74</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . The observer survey and motion analysis revealed that ultrasound artifacts significantly affected labeling accuracy due to limited landmark visibility, whereas motion amplitude had no measurable effect. Our measured mean landmark motion was <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>11.56</mn> <mtext>  </mtext> <mi>mm</mi> <mo>±</mo> <mn>5.86</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . We highlight variability in expert-labeled ground truth data for 4D ultrasound imaging and identify ultrasound artifacts as a major source of labeling inaccuracies. These findings underscore the importance of addressing observer variability and artifact-related challenges to improve the reliability of ground truth data for evaluating target tracking algorithms in 4D ultrasound applications.

TFKT V2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment.

Rifa KR, Ahamed MA, Zhang J, Imran A

pubmed logopapersSep 1 2025
The accurate assessment of computed tomography (CT) image quality is crucial for ensuring diagnostic reliability while minimizing radiation dose. Radiologists' evaluations are time-consuming and labor-intensive. Existing automated approaches often require large CT datasets with predefined image quality assessment (IQA) scores, which often do not align well with clinical evaluations. We aim to develop a reference-free, automated method for CT IQA that closely reflects radiologists' evaluations, reducing the dependency on large annotated datasets. We propose Task-Focused Knowledge Transfer (TFKT), a deep learning-based IQA method leveraging knowledge transfer from task-similar natural image datasets. TFKT incorporates a hybrid convolutional neural network-transformer model, enabling accurate quality predictions by learning from natural image distortions with human-annotated mean opinion scores. The model is pre-trained on natural image datasets and fine-tuned on low-dose computed tomography perceptual image quality assessment data to ensure task-specific adaptability. Extensive evaluations demonstrate that the proposed TFKT method effectively predicts IQA scores aligned with radiologists' assessments on in-domain datasets and generalizes well to out-of-domain clinical pediatric CT exams. The model achieves robust performance without requiring high-dose reference images. Our model is capable of assessing the quality of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> CT image slices in a second. The proposed TFKT approach provides a scalable, accurate, and reference-free solution for CT IQA. The model bridges the gap between traditional and deep learning-based IQA, offering clinically relevant and computationally efficient assessments applicable to real-world clinical settings.

Aphasia severity prediction using a multi-modal machine learning approach.

Hu X, Varkanitsa M, Kropp E, Betke M, Ishwar P, Kiran S

pubmed logopapersAug 15 2025
The present study examined an integrated multiple neuroimaging modality (T1 structural, Diffusion Tensor Imaging (DTI), and resting-state FMRI (rsFMRI)) to predict aphasia severity using Western Aphasia Battery-Revised Aphasia Quotient (WAB-R AQ) in 76 individuals with post-stroke aphasia. We employed Support Vector Regression (SVR) and Random Forest (RF) models with supervised feature selection and a stacked feature prediction approach. The SVR model outperformed RF, achieving an average root mean square error (RMSE) of 16.38±5.57, Pearson's correlation coefficient (r) of 0.70±0.13, and mean absolute error (MAE) of 12.67±3.27, compared to RF's RMSE of 18.41±4.34, r of 0.66±0.15, and MAE of 14.64±3.04. Resting-state neural activity and structural integrity emerged as crucial predictors of aphasia severity, appearing in the top 20% of predictor combinations for both SVR and RF. Finally, the feature selection method revealed that functional connectivity in both hemispheres and between homologous language areas is critical for predicting language outcomes in patients with aphasia. The statistically significant difference in performance between the model using only single modality and the optimal multi-modal SVR/RF model (which included both resting-state connectivity and structural information) underscores that aphasia severity is influenced by factors beyond lesion location and volume. These findings suggest that integrating multiple neuroimaging modalities enhances the prediction of language outcomes in aphasia beyond lesion characteristics alone, offering insights that could inform personalized rehabilitation strategies.

Artificial intelligence across the cancer care continuum.

Riaz IB, Khan MA, Osterman TJ

pubmed logopapersAug 15 2025
Artificial intelligence (AI) holds significant potential to enhance various aspects of oncology, spanning the cancer care continuum. This review provides an overview of current and emerging AI applications, from risk assessment and early detection to treatment and supportive care. AI-driven tools are being developed to integrate diverse data sources, including multi-omics and electronic health records, to improve cancer risk stratification and personalize prevention strategies. In screening and diagnosis, AI algorithms show promise in augmenting the accuracy and efficiency of medical image analysis and histopathology interpretation. AI also offers opportunities to refine treatment planning, optimize radiation therapy, and personalize systemic therapy selection. Furthermore, AI is explored for its potential to improve survivorship care by tailoring interventions and to enhance end-of-life care through improved symptom management and prognostic modeling. Beyond care delivery, AI augments clinical workflows, streamlines the dissemination of up-to-date evidence, and captures critical patient-reported outcomes for clinical decision support and outcomes assessment. However, the successful integration of AI into clinical practice requires addressing key challenges, including rigorous validation of algorithms, ensuring data privacy and security, and mitigating potential biases. Effective implementation necessitates interdisciplinary collaboration and comprehensive education for health care professionals. The synergistic interaction between AI and clinical expertise is crucial for realizing the potential of AI to contribute to personalized and effective cancer care. This review highlights the current state of AI in oncology and underscores the importance of responsible development and implementation.

URFM: A general Ultrasound Representation Foundation Model for advancing ultrasound image diagnosis.

Kang Q, Lao Q, Gao J, Bao W, He Z, Du C, Lu Q, Li K

pubmed logopapersAug 15 2025
Ultrasound imaging is critical for clinical diagnostics, providing insights into various diseases and organs. However, artificial intelligence (AI) in this field faces challenges, such as the need for large labeled datasets and limited task-specific model applicability, particularly due to ultrasound's low signal-to-noise ratio (SNR). To overcome these, we introduce the Ultrasound Representation Foundation Model (URFM), designed to learn robust, generalizable representations from unlabeled ultrasound images, enabling label-efficient adaptation to diverse diagnostic tasks. URFM is pre-trained on over 1M images from 15 major anatomical organs using representation-based masked image modeling (MIM), an advanced self-supervised learning. Unlike traditional pixel-based MIM, URFM integrates high-level representations from BiomedCLIP, a specialized medical vision-language model, to address the low SNR issue. Extensive evaluation shows that URFM outperforms state-of-the-art methods, offering enhanced generalization, label efficiency, and training-time efficiency. URFM's scalability and flexibility signal a significant advancement in diagnostic accuracy and clinical workflow optimization in ultrasound imaging.

Enhancing Diagnostic Accuracy of Fresh Vertebral Compression Fractures With Deep Learning Models.

Li KY, Ye HB, Zhang YL, Huang JW, Li HL, Tian NF

pubmed logopapersAug 15 2025
Retrospective study. The study aimed to develop and authenticated a deep learning model based on X-ray images to accurately diagnose fresh thoracolumbar vertebral compression fractures. In clinical practice, diagnosing fresh vertebral compression fractures often requires MRI. However, due to the scarcity of MRI resources and the high time and economic costs involved, some patients may not receive timely diagnosis and treatment. Using a deep learning model combined with X-rays for diagnostic assistance could potentially serve as an alternative to MRI. In this study, the main collection included X-ray images suspected of thoracolumbar vertebral compression fractures from the municipal shared database between December 2012 and February 2024. Deep learning models were constructed using frameworks of EfficientNet, MobileNet, and MnasNet, respectively. We conducted a preliminary evaluation of the deep learning model using the validation set. The diagnostic performance of the models was evaluated using metrics such as AUC value, accuracy, sensitivity, specificity, F1 score, precision, and ROC curve. Finally, the deep learning models were compared with evaluations from two spine surgeons of different experience levels on the control set. This study included a total of 3025 lateral X-ray images from 2224 patients. The data set was divided into a training set of 2388 cases, a validation set of 482 cases, and a control set of 155 cases. In the validation set, the three groups of DL models had accuracies of 83.0%, 82.4%, and 82.2%, respectively. The AUC values were 0.861, 0.852, and 0.865, respectively. In the control set, the accuracies of the three groups of DL models were 78.1%, 78.1%, and 80.7%, respectively, all higher than spinal surgeons and significantly higher than junior spine surgeon. This study developed deep learning models for detecting fresh vertebral compression fractures, demonstrating high accuracy.

Aortic atherosclerosis evaluation using deep learning based on non-contrast CT: A retrospective multi-center study.

Yang M, Lyu J, Xiong Y, Mei A, Hu J, Zhang Y, Wang X, Bian X, Huang J, Li R, Xing X, Su S, Gao J, Lou X

pubmed logopapersAug 15 2025
Non-contrast CT (NCCT) is widely used in clinical practice and holds potential for large-scale atherosclerosis screening, yet its application in detecting and grading aortic atherosclerosis remains limited. To address this, we propose Aortic-AAE, an automated segmentation system based on a cascaded attention mechanism within the nnU-Net framework. The cascaded attention module enhances feature learning across complex anatomical structures, outperforming existing attention modules. Integrated preprocessing and post-processing ensure anatomical consistency and robustness across multi-center data. Trained on 435 labeled NCCT scans from three centers and validated on 388 independent cases, Aortic-AAE achieved 81.12% accuracy in aortic stenosis classification and 92.37% in Agatston scoring of calcified plaques, surpassing five state-of-the-art models. This study demonstrates the feasibility of using deep learning for accurate detection and grading of aortic atherosclerosis from NCCT, supporting improved diagnostic decisions and enhanced clinical workflows.

Machine learning based differential diagnosis of schizophrenia, major depression disorder and bipolar disorder using structural magnetic resonance imaging.

Cao P, Li R, Li Y, Dong Y, Tang Y, Xu G, Si Q, Chen C, Chen L, Liu W, Yao Y, Sui Y, Zhang J

pubmed logopapersAug 15 2025
Cortical morphological abnormalities in schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD) have been identified in past research. However, their potential as objective biomarkers to differentiate these disorders remains uncertain. Machine learning models may offer a novel diagnostic tool. Structural MRI (sMRI) of 220 SCZ, 220 MDD, 220 BD, and 220 healthy controls were obtained using a 3T scanner. Volume, thickness, surface area, and mean curvature of 68 cerebral cortices were extracted using FreeSurfer. 272 features underwent 3 feature selection techniques to isolate important variables for model construction. These features were incorporated into 3 classifiers for classification. After model evaluation and hyperparameter tuning, the best-performing model was identified, along with the most significant brain measures. The univariate feature selection-Naive Bayes model achieved the best performance, with an accuracy of 0.66, macro-average AUC of 0.86, and sensitivities and specificities ranging from 0.58-0.86 to 0.81-0.93, respectively. Key features included thickness of right isthmus-cingulate cortex, area of left inferior temporal gyrus, thickness of right superior temporal gyrus, mean curvature of right pars orbitalis, thickness of left transverse temporal cortex, volume of left caudal anterior-cingulate cortex, area of right banks superior temporal sulcus, and thickness of right temporal pole. The machine learning model based on sMRI data shows promise for aiding in the differential diagnosis of SCZ, MDD, and BD. Cortical features from the cingulate and temporal lobes may highlight distinct biological mechanisms underlying each disorder.
Page 2 of 3293286 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.