Back to all papers

Improving data-driven gated (DDG) PET and CT registration in thoracic lesions: a comparison of AI registration and DDG CT.

Authors

Pan T,Thomas MA,Lu Y,Luo D

Affiliations (4)

  • Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. [email protected].
  • Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
  • Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA.
  • Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA.

Abstract

Misregistration between CT and PET can result in mis-localization and inaccurate quantification of the tracer uptake in PET. Data-driven gated (DDG) CT can correct registration and quantification but requires a radiation dose of 1.3 mSv and 1 min of acquisition time. AI registration (AIR) does not require an additional CT and has been validated to improve registration and reduce the 'banana' misregistration artifacts around the diaphragm. We aimed to compare a validated AIR and DDG CT in registration and quantification of avid thoracic lesions misregistered in DDG PET scans. Thirty PET/CT patient data (23 with <sup>18</sup>F-FDG, 4 with <sup>68</sup>Ga-Dotatate, and 3 with <sup>18</sup>F-PSMA piflufolastat) with at least one misregistered avid lesion in the thorax were recruited. Patient studies were conducted using DDG CT to correct misregistration with DDG PET data of the phases 30 to 80% on GE Discovery MI PET/CT scanners. Non-attenuation correction DDG PET and misregistered CT were input to AIR and the AIR-corrected CT data were output to register and quantify the DDG PET data. Registration and quantification of lesion SUV<sub>max</sub> and signal-to-background ratio (SBR) of the lesion SUV<sub>max</sub> to the 2-cm background mean SUV were compared for each of the 51 avid lesions. DDG CT outperformed AIR in misregistration correction and quantification of avid thoracic lesions (1.16 ± 0.45 cm). Most lesions (46/51, 90%) showed improved registration from DDG CT relative to AIR, with 10% (5/51) being similar between AIR and DDG CT. The lesions in the baseline CT were an average of 2.06 ± 1.0 cm from their corresponding lesions in the DDG CT, while those in the AIR CT were an average of 0.97 ± 0.54 cm away. AIR significantly improved lesion registration compared to the baseline CT (P < 0.0001). SUV<sub>max</sub> increased by 18.1 ± 15.3% with AIR, but a statistically significantly larger increase of 34.4 ± 25.4% was observed with DDG CT (P < 0.0001). A statistically significant increase in SBR was also observed, rising from 10.5 ± 12.1% of AIR to 21.1 ± 20.5% of DDG CT (P < 0.0001). Many registration improvements by AIR were still left with misregistration. AIR could mis-localize a lymph node to the lung parenchyma or the ribs, and could also mis-localize a lung nodule to the left atrium. AIR could also distort the rib cage and the circular shape of the aorta cross section. DDG CT outperformed AIR in both localization and quantification of the thoracic avid lesions. AIR improved registration of the misregistered PET/CT. Registered lymph nodes could be falsely misregistered by AIR. AIR-induced distortion of the rib cage can also negatively impact image quality. Further research on AIR's accuracy in modeling true patient respiratory motion without introducing new misregistration or anatomical distortion is warranted.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.