Sort by:
Page 2 of 436 results

Ultrafast J-resolved magnetic resonance spectroscopic imaging for high-resolution metabolic brain imaging.

Zhao Y, Li Y, Jin W, Guo R, Ma C, Tang W, Li Y, El Fakhri G, Liang ZP

pubmed logopapersJun 20 2025
Magnetic resonance spectroscopic imaging has potential for non-invasive metabolic imaging of the human brain. Here we report a method that overcomes several long-standing technical barriers associated with clinical magnetic resonance spectroscopic imaging, including long data acquisition times, limited spatial coverage and poor spatial resolution. Our method achieves ultrafast data acquisition using an efficient approach to encode spatial, spectral and J-coupling information of multiple molecules. Physics-informed machine learning is synergistically integrated in data processing to enable reconstruction of high-quality molecular maps. We validated the proposed method through phantom experiments. We obtained high-resolution molecular maps from healthy participants, revealing metabolic heterogeneities in different brain regions. We also obtained high-resolution whole-brain molecular maps in regular clinical settings, revealing metabolic alterations in tumours and multiple sclerosis. This method has the potential to transform clinical metabolic imaging and provide a long-desired capability for non-invasive label-free metabolic imaging of brain function and diseases for both research and clinical applications.

Unsupervised risk factor identification across cancer types and data modalities via explainable artificial intelligence

Maximilian Ferle, Jonas Ader, Thomas Wiemers, Nora Grieb, Adrian Lindenmeyer, Hans-Jonas Meyer, Thomas Neumuth, Markus Kreuz, Kristin Reiche, Maximilian Merz

arxiv logopreprintJun 15 2025
Risk stratification is a key tool in clinical decision-making, yet current approaches often fail to translate sophisticated survival analysis into actionable clinical criteria. We present a novel method for unsupervised machine learning that directly optimizes for survival heterogeneity across patient clusters through a differentiable adaptation of the multivariate logrank statistic. Unlike most existing methods that rely on proxy metrics, our approach represents novel methodology for training any neural network architecture on any data modality to identify prognostically distinct patient groups. We thoroughly evaluate the method in simulation experiments and demonstrate its utility in practice by applying it to two distinct cancer types: analyzing laboratory parameters from multiple myeloma patients and computed tomography images from non-small cell lung cancer patients, identifying prognostically distinct patient subgroups with significantly different survival outcomes in both cases. Post-hoc explainability analyses uncover clinically meaningful features determining the group assignments which align well with established risk factors and thus lend strong weight to the methods utility. This pan-cancer, model-agnostic approach represents a valuable advancement in clinical risk stratification, enabling the discovery of novel prognostic signatures across diverse data types while providing interpretable results that promise to complement treatment personalization and clinical decision-making in oncology and beyond.

Protocol of the observational study STRATUM-OS: First step in the development and validation of the STRATUM tool based on multimodal data processing to assist surgery in patients affected by intra-axial brain tumours

Fabelo, H., Ramallo-Farina, Y., Morera, J., Pineiro, J. F., Lagares, A., Jimenez-Roldan, L., Burstrom, G., Garcia-Bello, M. A., Garcia-Perez, L., Falero, R., Gonzalez, M., Duque, S., Rodriguez-Jimenez, C., Hernandez, M., Delgado-Sanchez, J. J., Paredes, A. B., Hernandez, G., Ponce, P., Leon, R., Gonzalez-Martin, J. M., Rodriguez-Esparragon, F., Callico, G. M., Wagner, A. M., Clavo, B., STRATUM,

medrxiv logopreprintJun 13 2025
IntroductionIntegrated digital diagnostics can support complex surgeries in many anatomic sites, and brain tumour surgery represents one of the most complex cases. Neurosurgeons face several challenges during brain tumour surgeries, such as differentiating critical tissue from brain tumour margins. To overcome these challenges, the STRATUM project will develop a 3D decision support tool for brain surgery guidance and diagnostics based on multimodal data processing, including hyperspectral imaging, integrated as a point-of-care computing tool in neurosurgical workflows. This paper reports the protocol for the development and technical validation of the STRATUM tool. Methods and analysisThis international multicentre, prospective, open, observational cohort study, STRATUM-OS (study: 28 months, pre-recruitment: 2 months, recruitment: 20 months, follow-up: 6 months), with no control group, will collect data from 320 patients undergoing standard neurosurgical procedures to: (1) develop and technically validate the STRATUM tool, and (2) collect the outcome measures for comparing the standard procedure versus the standard procedure plus the use of the STRATUM tool during surgery in a subsequent historically controlled non-randomized clinical trial. Ethics and disseminationThe protocol was approved by the participant Ethics Committees. Results will be disseminated in scientific conferences and peer-reviewed journals. Trial registration number[Pending Number] ARTICLE SUMMARYO_ST_ABSStrengths and limitations of this studyC_ST_ABSO_LISTRATUM-OS will be the first multicentre prospective observational study to develop and technically validate a 3D decision support tool for brain surgery guidance and diagnostics in real-time based on artificial intelligence and multimodal data processing, including the emerging hyperspectral imaging modality. C_LIO_LIThis study encompasses a prospective collection of multimodal pre, intra and postoperative medical data, including innovative imaging modalities, from patients with intra-axial brain tumours. C_LIO_LIThis large observational study will act as historical control in a subsequent clinical trial to evaluate a fully-working prototype. C_LIO_LIAlthough the estimated sample size is deemed adequate for the purpose of the study, the complexity of the clinical context and the type of surgery could potentially lead to under-recruitment and under-representation of less prevalent tumour types. C_LI

Accelerating Diffusion: Task-Optimized latent diffusion models for rapid CT denoising.

Jee J, Chang W, Kim E, Lee K

pubmed logopapersJun 12 2025
Computed tomography (CT) systems are indispensable for diagnostics but pose risks due to radiation exposure. Low-dose CT (LDCT) mitigates these risks but introduces noise and artifacts that compromise diagnostic accuracy. While deep learning methods, such as convolutional neural networks (CNNs) and generative adversarial networks (GANs), have been applied to LDCT denoising, challenges persist, including difficulties in preserving fine details and risks of model collapse. Recently, the Denoising Diffusion Probabilistic Model (DDPM) has addressed the limitations of traditional methods and demonstrated exceptional performance across various tasks. Despite these advancements, its high computational cost during training and extended sampling time significantly hinder practical clinical applications. Additionally, DDPM's reliance on random Gaussian noise can reduce optimization efficiency and performance in task-specific applications. To overcome these challenges, this study proposes a novel LDCT denoising framework that integrates the Latent Diffusion Model (LDM) with the Cold Diffusion Process. LDM reduces computational costs by conducting the diffusion process in a low-dimensional latent space while preserving critical image features. The Cold Diffusion Process replaces Gaussian noise with a CT denoising task-specific degradation approach, enabling efficient denoising with fewer time steps. Experimental results demonstrate that the proposed method outperforms DDPM in key metrics, including PSNR, SSIM, and RMSE, while achieving up to 2 × faster training and 14 × faster sampling. These advancements highlight the proposed framework's potential as an effective and practical solution for real-world clinical applications.

Vector Representations of Vessel Trees

James Batten, Michiel Schaap, Matthew Sinclair, Ying Bai, Ben Glocker

arxiv logopreprintJun 11 2025
We introduce a novel framework for learning vector representations of tree-structured geometric data focusing on 3D vascular networks. Our approach employs two sequentially trained Transformer-based autoencoders. In the first stage, the Vessel Autoencoder captures continuous geometric details of individual vessel segments by learning embeddings from sampled points along each curve. In the second stage, the Vessel Tree Autoencoder encodes the topology of the vascular network as a single vector representation, leveraging the segment-level embeddings from the first model. A recursive decoding process ensures that the reconstructed topology is a valid tree structure. Compared to 3D convolutional models, this proposed approach substantially lowers GPU memory requirements, facilitating large-scale training. Experimental results on a 2D synthetic tree dataset and a 3D coronary artery dataset demonstrate superior reconstruction fidelity, accurate topology preservation, and realistic interpolations in latent space. Our scalable framework, named VeTTA, offers precise, flexible, and topologically consistent modeling of anatomical tree structures in medical imaging.

SCAI-Net: An AI-driven framework for optimized, fast, and resource-efficient skull implant generation for cranioplasty using CT images.

Juneja M, Poddar A, Kharbanda M, Sudhir A, Gupta S, Joshi P, Goel A, Fatma N, Gupta M, Tarkas S, Gupta V, Jindal P

pubmed logopapersJun 7 2025
Skull damage caused by craniectomy or trauma necessitates accurate and precise Patient-Specific Implant (PSI) design to restore the cranial cavity. Conventional Computer-Aided Design (CAD)-based methods for PSI design are highly infrastructure-intensive, require specialised skills, and are time-consuming, resulting in prolonged patient wait times. Recent advancements in Artificial Intelligence (AI) provide automated, faster and scalable alternatives. This study introduces the Skull Completion using AI Network (SCAI-Net) framework, a deep-learning-based approach for automated cranial defect reconstruction using Computer Tomography (CT) images. The framework proposes two defect reconstruction variants: SCAI-Net-SDR (Subtraction-based Defect Reconstruction), which first reconstructs the full skull, then performs binary subtraction to obtain the reconstructed defect, and SCAI-Net-DDR (Direct Defect Reconstruction), which generates the reconstructed defect directly without requiring full-skull reconstruction. To enhance model robustness, the SCAI-Net was trained on an augmented dataset of 2760 images, created by combining MUG500+ and SkullFix datasets, featuring artificial defects across multiple cranial regions. Unlike subtraction-based SCAI-Net-SDR, which requires full-skull reconstruction before binary subtraction, and conventional CAD-based methods, which rely on interpolation or mirroring, SCAI-Net-DDR significantly reduces computational overhead. By eliminating the full-skull reconstruction step, DDR reduces training time by 66 % (85 min vs. 250 min for SDR) and achieves a 99.996 % faster defect reconstruction time compared to CAD (0.1s vs. 2400s). Based on the quantitative evaluation conducted on the SkullFix test cases, SCAI-Net-DDR emerged as the leading model among all evaluated approaches. SCAI-Net-DDR achieved the highest Dice Similarity Coefficient (DSC: 0.889), a low Hausdorff Distance (HD: 1.856 mm), and a superior Structural Similarity Index (SSIM: 0.897). Similarly, within the subset of subtraction-based reconstruction approaches evaluated, SCAI-Net-SDR demonstrated competitive performance, achieving the best HD (1.855 mm) and the highest SSIM (0.889), confirming its strong standing among methods using the subtraction paradigm. SCAI-Net generates reconstructed defects, which undergo post-processing to ensure manufacturing readiness. Steps include surface smoothing, thickness validation and edge preparation for secure fixation and seamless digital manufacturing compatibility. End-to-end implant generation time for DDR demonstrated a 96.68 % reduction (93.5 s), while SDR achieved a 96.64 % reduction (94.6 s), significantly outperforming CAD-based methods (2820s). Finite Element Analysis (FEA) confirmed the SCAI-Net-generated implants' robust load-bearing capacity under extreme loading (1780N) conditions, while edge gap analysis validated precise anatomical fit. Clinical validation further confirmed boundary accuracy, curvature alignment, and secure fit within cranial cavity. These results position SCAI-Net as a transformative, time-efficient, and resource-optimized solution for AI-driven cranial defect reconstruction and implant generation.

Current AI technologies in cancer diagnostics and treatment.

Tiwari A, Mishra S, Kuo TR

pubmed logopapersJun 2 2025
Cancer continues to be a significant international health issue, which demands the invention of new methods for early detection, precise diagnoses, and personalized treatments. Artificial intelligence (AI) has rapidly become a groundbreaking component in the modern era of oncology, offering sophisticated tools across the range of cancer care. In this review, we performed a systematic survey of the current status of AI technologies used for cancer diagnoses and therapeutic approaches. We discuss AI-facilitated imaging diagnostics using a range of modalities such as computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and digital pathology, highlighting the growing role of deep learning in detecting early-stage cancers. We also explore applications of AI in genomics and biomarker discovery, liquid biopsies, and non-invasive diagnoses. In therapeutic interventions, AI-based clinical decision support systems, individualized treatment planning, and AI-facilitated drug discovery are transforming precision cancer therapies. The review also evaluates the effects of AI on radiation therapy, robotic surgery, and patient management, including survival predictions, remote monitoring, and AI-facilitated clinical trials. Finally, we discuss important challenges such as data privacy, interpretability, and regulatory issues, and recommend future directions that involve the use of federated learning, synthetic biology, and quantum-boosted AI. This review highlights the groundbreaking potential of AI to revolutionize cancer care by making diagnostics, treatments, and patient management more precise, efficient, and personalized.

Cardiac Phase Estimation Using Deep Learning Analysis of Pulsed-Mode Projections: Toward Autonomous Cardiac CT Imaging.

Wu P, Haneda E, Pack JD, Heukensfeldt Jansen I, Hsiao A, McVeigh E, De Man B

pubmed logopapersJun 1 2025
Cardiac CT plays an important role in diagnosing heart diseases but is conventionally limited by its complex workflow that requires dedicated phase and bolus tracking devices [e.g., electrocardiogram (ECG) gating]. This work reports first progress towards robust and autonomous cardiac CT exams through joint deep learning (DL) and analytical analysis of pulsed-mode projections (PMPs). To this end, cardiac phase and its uncertainty were simultaneously estimated using a novel projection domain cardiac phase estimation network (PhaseNet), which utilizes sliding-window multi-channel feature extraction strategy and a long short-term memory (LSTM) block to extract temporal correlation between time-distributed PMPs. An uncertainty-driven Viterbi (UDV) regularizer was developed to refine the DL estimations at each time point through dynamic programming. Stronger regularization was performed at time points where DL estimations have higher uncertainty. The performance of the proposed phase estimation pipeline was evaluated using accurate physics-based emulated data. PhaseNet achieved improved phase estimation accuracy compared to the competing methods in terms of RMSE (~50% improvement vs. standard CNN-LSTM; ~24% improvement vs. multi-channel residual network). The added UDV regularizer resulted in an additional ~14% improvement in RMSE, achieving accurate phase estimation with <6% RMSE in cardiac phase (phase ranges from 0-100%). To our knowledge, this is the first publication of prospective cardiac phase estimation in the projection domain. Combined with our previous work on PMP-based bolus curve estimation, the proposed method could potentially be used to achieve autonomous cardiac scanning without ECG device and expert-in-the-loop bolus timing.

A Dual-Energy Computed Tomography Guided Intelligent Radiation Therapy Platform.

Wen N, Zhang Y, Zhang H, Zhang M, Zhou J, Liu Y, Liao C, Jia L, Zhang K, Chen J

pubmed logopapersJun 1 2025
The integration of advanced imaging and artificial intelligence technologies in radiation therapy has revolutionized cancer treatment by enhancing precision and adaptability. This study introduces a novel dual-energy computed tomography (DECT) guided intelligent radiation therapy (DEIT) platform designed to streamline and optimize the radiation therapy process. The DEIT system combines DECT, a newly designed dual-layer multileaf collimator, deep learning algorithms for auto-segmentation, and automated planning and quality assurance capabilities. The DEIT system integrates an 80-slice computed tomography (CT) scanner with an 87 cm bore size, a linear accelerator delivering 4 photon and 5 electron energies, and a flat panel imager optimized for megavoltage (MV) cone beam CT acquisition. A comprehensive evaluation of the system's accuracy was conducted using end-to-end tests. Virtual monoenergetic CT images and electron density images of the DECT were generated and compared on both phantom and patient. The system's auto-segmentation algorithms were tested on 5 cases for each of the 99 organs at risk, and the automated optimization and planning capabilities were evaluated on clinical cases. The DEIT system demonstrated systematic errors of less than 1 mm for target localization. DECT reconstruction showed electron density mapping deviations ranging from -0.052 to 0.001, with stable Hounsfield unit consistency across monoenergetic levels above 60 keV, except for high-Z materials at lower energies. Auto-segmentation achieved dice similarity coefficients above 0.9 for most organs with an inference time of less than 2 seconds. Dose-volume histogram comparisons showed improved dose conformity indices and reduced doses to critical structures in auto-plans compared to manual plans across various clinical cases. In addition, high gamma passing rates at 2%/2 mm in both 2-dimensional (above 97%) and 3-dimensional (above 99%) in vivo analyses further validate the accuracy and reliability of treatment plans. The DEIT platform represents a viable solution for radiation treatment. The DEIT system uses artificial intelligence-driven automation, real-time adjustments, and CT imaging to enhance the radiation therapy process, improving efficiency and flexibility.

Information Geometric Approaches for Patient-Specific Test-Time Adaptation of Deep Learning Models for Semantic Segmentation.

Ravishankar H, Paluru N, Sudhakar P, Yalavarthy PK

pubmed logopapersJun 1 2025
The test-time adaptation (TTA) of deep-learning-based semantic segmentation models, specific to individual patient data, was addressed in this study. The existing TTA methods in medical imaging are often unconstrained, require anatomical prior information or additional neural networks built during training phase, making them less practical, and prone to performance deterioration. In this study, a novel framework based on information geometric principles was proposed to achieve generic, off-the-shelf, regularized patient-specific adaptation of models during test-time. By considering the pre-trained model and the adapted models as part of statistical neuromanifolds, test-time adaptation was treated as constrained functional regularization using information geometric measures, leading to improved generalization and patient optimality. The efficacy of the proposed approach was shown on three challenging problems: 1) improving generalization of state-of-the-art models for segmenting COVID-19 anomalies in Computed Tomography (CT) images 2) cross-institutional brain tumor segmentation from magnetic resonance (MR) images, 3) segmentation of retinal layers in Optical Coherence Tomography (OCT) images. Further, it was demonstrated that robust patient-specific adaptation can be achieved without adding significant computational burden, making it first of its kind based on information geometric principles.
Page 2 of 436 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.