MR-AIV reveals <i>in vivo</i> brain-wide fluid flow with physics-informed AI.
Authors
Abstract
The circulation of cerebrospinal and interstitial fluid plays a vital role in clearing metabolic waste from the brain, and its disruption has been linked to neurological disorders. However, directly measuring brain-wide fluid transport-especially in the deep brain-has remained elusive. Here, we introduce magnetic resonance artificial intelligence velocimetry (MR-AIV), a framework featuring a specialized physics-informed architecture and optimization method that reconstructs three-dimensional fluid velocity fields from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MR-AIV unveils brain-wide velocity maps while providing estimates of tissue permeability and pressure fields-quantities inaccessible to other methods. Applied to the brain, MR-AIV reveals a functional landscape of interstitial and perivascular flow, quantitatively distinguishing slow diffusion-driven transport (∼ 0.1 µm/s) from rapid advective flow (∼ 3 µm/s). This approach enables new investigations into brain clearance mechanisms and fluid dynamics in health and disease, with broad potential applications to other porous media systems, from geophysics to tissue mechanics.