Sort by:
Page 2 of 53522 results

Assessment of AI-accelerated T2-weighted brain MRI, based on clinical ratings and image quality evaluation.

Nonninger JN, Kienast P, Pogledic I, Mallouhi A, Barkhof F, Trattnig S, Robinson SD, Kasprian G, Haider L

pubmed logopapersJul 1 2025
To compare clinical ratings and signal-to-noise ratio (SNR) measures of a commercially available Deep Learning-based MRI reconstruction method (T2<sub>(DR)</sub>) against conventional T2- turbo spin echo brain MRI (T2<sub>(CN)</sub>). 100 consecutive patients with various neurological conditions underwent both T2<sub>(DR)</sub> and T2<sub>(CN)</sub> on a Siemens Vida 3 T scanner with a 64-channel head coil in the same examination. Acquisition times were 3.33 min for T2<sub>(CN)</sub> and 1.04 min for T2<sub>(DR)</sub>. Four neuroradiologists evaluated overall image quality (OIQ), diagnostic safety (DS), and image artifacts (IA), blinded to the acquisition mode. SNR and SNR<sub>eff</sub> (adjusted for acquisition time) were calculated for air, grey- and white matter, and cerebrospinal fluid. The mean patient age was 43.6 years (SD 20.3), with 54 females. The distribution of non-diagnostic ratings did not differ significantly between T2<sub>(CN)</sub> and T2<sub>(DR)</sub> (IA p = 0.108; OIQ: p = 0.700 and DS: p = 0.652). However, when considering the full spectrum of ratings, significant differences favouring T2<sub>(CN)</sub> emerged in OIQ (p = 0.003) and IA (p < 0.001). T2<sub>(CN)</sub> had higher SNR (157.9, SD 123.4) than T2<sub>(DR)</sub> (112.8, SD 82.7), p < 0.001, but T2<sub>(DR)</sub> demonstrated superior SNR<sub>eff</sub> (14.1, SD 10.3) compared to T2<sub>(CN)</sub> (10.8, SD 8.5), p < 0.001. Our results suggest that while T2<sub>(DR)</sub> may be clinically applicable for a diagnostic setting, it does not fully match the quality of high-standard conventional T2<sub>(CN)</sub>, MRI acquisitions.

Accelerating CEST MRI With Deep Learning-Based Frequency Selection and Parameter Estimation.

Shen C, Cheema K, Xie Y, Ruan D, Li D

pubmed logopapersJul 1 2025
Chemical exchange saturation transfer (CEST) MRI is a powerful molecular imaging technique for detecting metabolites through proton exchange. While CEST MRI provides high sensitivity, its clinical application is hindered by prolonged scan time due to the need for imaging across numerous frequency offsets for parameter estimation. Since scan time is directly proportional to the number of frequency offsets, identifying and selecting the most informative frequency can significantly reduce acquisition time. We propose a novel deep learning-based framework that integrates frequency selection and parameter estimation to accelerate CEST MRI. Our method leverages channel pruning via batch normalization to identify the most informative frequency offsets while simultaneously training the network for accurate parametric map prediction. Using data from six healthy volunteers, channel pruning selects 13 informative frequency offsets out of 53 without compromising map quality. Images from selected frequency offsets were reconstructed using the MR Multitasking method, which employs a low-rank tensor model to enable under-sampling of k-space lines for each frequency offset, further reducing scan time. Predicted parametric maps of amide proton transfer (APT), nuclear overhauser effect (NOE), and magnetization transfer (MT) based on these selected frequencies were comparable in quality to maps generated using all frequency offsets, achieving superior performance compared to Fisher information-based selection methods from our previous work. This integrated approach has the potential to reduce the whole-brain CEST MRI scan time from the original 5:30 min to under 1:30 min without compromising map quality. By leveraging deep learning for frequency selection and parametric map prediction, the proposed framework demonstrates its potential for efficient and practical clinical implementation. Future studies will focus on extending this method to patient populations and addressing challenges such as B<sub>0</sub> inhomogeneity and abnormal signal variation in diseased tissues.

Establishment and evaluation of an automatic multi?sequence MRI segmentation model of primary central nervous system lymphoma based on the nnU?Net deep learning network method.

Wang T, Tang X, Du J, Jia Y, Mou W, Lu G

pubmed logopapersJul 1 2025
Accurate quantitative assessment using gadolinium-contrast magnetic resonance imaging (MRI) is crucial in therapy planning, surveillance and prognostic assessment of primary central nervous system lymphoma (PCNSL). The present study aimed to develop a multimodal artificial intelligence deep learning segmentation model to address the challenges associated with traditional 2D measurements and manual volume assessments in MRI. Data from 49 pathologically-confirmed patients with PCNSL from six Chinese medical centers were analyzed, and regions of interest were manually segmented on contrast-enhanced T1-weighted and T2-weighted MRI scans for each patient, followed by fully automated voxel-wise segmentation of tumor components using a 3-dimenstional convolutional deep neural network. Furthermore, the efficiency of the model was evaluated using practical indicators and its consistency and accuracy was compared with traditional methods. The performance of the models were assessed using the Dice similarity coefficient (DSC). The Mann-Whitney U test was used to compare continuous clinical variables and the χ<sup>2</sup> test was used for comparisons between categorical clinical variables. T1WI sequences exhibited the optimal performance (training dice: 0.923, testing dice: 0.830, outer validation dice: 0.801), while T2WI showed a relatively poor performance (training dice of 0.761, a testing dice of 0.647, and an outer validation dice of 0.643. In conclusion, the automatic multi-sequences MRI segmentation model for PCNSL in the present study displayed high spatial overlap ratio and similar tumor volume with routine manual segmentation, indicating its significant potential.

Machine learning in neuroimaging and computational pathophysiology of Parkinson's disease: A comprehensive review and meta-analysis.

Sharma K, Shanbhog M, Singh K

pubmed logopapersJul 1 2025
In recent years, machine learning and deep learning have shown potential for improving Parkinson's disease (PD) diagnosis, one of the most common neurodegenerative diseases. This comprehensive analysis examines machine learning and deep learning-based Parkinson's disease diagnosis using MRI, speech, and handwriting datasets. To thoroughly analyze PD, this study collected data from scientific literature, experimental investigations, publicly accessible datasets, and global health reports. This study examines the worldwide historical setting of Parkinson's disease, focusing on its increasing prevalence and inequities in treatment access across various regions. A comprehensive summary consolidates essential findings from clinical investigations and pertinent datasets related to Parkinson's disease management. The worldwide context, prospective treatments, therapies, and drugs for Parkinson's disease have been thoroughly examined. This analysis identifies significant research deficiencies and suggests future methods, emphasizing the necessity for more extensive and diverse datasets and improved model accessibility. The current study proposes the Meta-Park model for diagnosing Parkinson's disease, achieving training, testing, and validation accuracy of 97.67 %, 95 %, and 94.04 %. This method provides a dependable and scalable way to improve clinical decision-making in managing Parkinson's disease. This research seeks to provide innovative, data-driven decisions for early diagnosis and effective treatment by merging the proposed method with a thorough examination of existing interventions, providing renewed hope to patients and the medical community.

The implementation of artificial intelligence in serial monitoring of post gamma knife vestibular schwannomas: A pilot study.

Singh M, Jester N, Lorr S, Briano A, Schwartz N, Mahajan A, Chiang V, Tommasini SM, Wiznia DH, Buono FD

pubmed logopapersJul 1 2025
Vestibular schwannomas (VS) are benign tumors that can lead to hearing loss, balance issues, and tinnitus. Gamma Knife Radiosurgery (GKS) is a common treatment for VS, aimed at halting tumor growth and preserving neurological function. Accurate monitoring of VS volume before and after GKS is essential for assessing treatment efficacy. To evaluate the accuracy of an artificial intelligence (AI) algorithm, originally developed to identify NF2-SWN-related VS, in segmenting non-NF2-SWN-related VS and detecting volume changes pre- and post-GKS. We hypothesize this AI algorithm, trained on NF2-SWN-related VS data, will accurately apply to non-NF2-SWN VS and VS treated with GKS. In this retrospective cohort study, we reviewed data from an established Gamma Knife database, identifying 16 patients who underwent GKS for VS and had pre- and post-GKS scans. Contrast-enhanced T1-weighted MRI scans were analyzed with both manual segmentation and the AI algorithm. DICE similarity coefficients were computed to compare AI and manual segmentations, and a paired t-test was used to assess statistical significance. Volume changes for pre- and post-GKS scans were calculated for both segmentation methods. The mean DICE score between AI and manual segmentations was 0.91 (range 0.79-0.97). Pre- and post-GKS DICE scores were 0.91 (range 0.79-0.97) and 0.92 (range 0.81-0.97), indicating high spatial overlap. AI-segmented VS volumes pre- and post-GKS were consistent with manual measurements, with high DICE scores indicating strong spatial overlap. The AI algorithm processed scans within 5 min, suggesting it offers a reliable, efficient alternative for clinical monitoring. DICE scores showed high similarity between manual and AI segmentations. The pre- and post-GKS VS volume percentage changes were also similar between manual and AI-segmented VS volumes, indicating that our AI algorithm can accurately detect changes in tumor growth.

Prediction of early recurrence in primary central nervous system lymphoma based on multimodal MRI-based radiomics: A preliminary study.

Wang X, Wang S, Zhao X, Chen L, Yuan M, Yan Y, Sun X, Liu Y, Sun S

pubmed logopapersJul 1 2025
To evaluate the role of multimodal magnetic resonance imaging radiomics features in predicting early recurrence of primary central nervous system lymphoma (PCNSL) and to investigate their correlation with patient prognosis. A retrospective analysis was conducted on 145 patients with PCNSL who were treated with high-dose methotrexate-based chemotherapy. Clinical data and MRI images were collected, with tumor regions segmented using ITK-SNAP software. Radiomics features were extracted via Pyradiomics, and predictive models were developed using various machine learning algorithms. The predictive performance of these models was assessed using receiver operating characteristic (ROC) curves. Additionally, Cox regression analysis was employed to identify risk factors associated with progression-free survival (PFS). In the cohort of 145 PCNSL patients (72 recurrence, 73 non-recurrence), clinical characteristics were comparable between groups except for multiple lesion frequency (61.1% vs. 39.7%, p < 0.05) and not receiving consolidation therapy (44.4% vs. 13.7%, p < 0.05). A total of 2392 radiomics features were extracted from CET1 and T2WI MRI sequence. Combining clinical variables, 10 features were retained after the feature selection process. The logistic regression (LR) model exhibited superior predictive performance in the test set to predict PCNSL early relapse, with an area under the curve (AUC) of 0.887 (95 % confidence interval: 0.785-0.988). Multivariate Cox regression identified the Cli-Rad score as an independent prognostic factor for PFS. Significant difference in PFS was observed between high- and low-risk groups defined by Cli-Rad score (8.24 months vs. 24.17 months, p < 0.001). The LR model based on multimodal MRI radiomics and clinical features, can effectively predict early recurrence of PCNSL, while the Cli-Rad score could independently forecast PFS among PCNSL patients.

Physiological Confounds in BOLD-fMRI and Their Correction.

Addeh A, Williams RJ, Golestani A, Pike GB, MacDonald ME

pubmed logopapersJul 1 2025
Functional magnetic resonance imaging (fMRI) has opened new frontiers in neuroscience by instrumentally driving our understanding of brain function and development. Despite its substantial successes, fMRI studies persistently encounter obstacles stemming from inherent, unavoidable physiological confounds. The adverse effects of these confounds are especially noticeable with higher magnetic fields, which have been gaining momentum in fMRI experiments. This review focuses on the four major physiological confounds impacting fMRI studies: low-frequency fluctuations in both breathing depth and rate, low-frequency fluctuations in the heart rate, thoracic movements, and cardiac pulsatility. Over the past three decades, numerous correction techniques have emerged to address these challenges. Correction methods have effectively enhanced the detection of task-activated voxels and minimized the occurrence of false positives and false negatives in functional connectivity studies. While confound correction methods have merit, they also have certain limitations. For instance, model-based approaches require externally recorded physiological data that is often unavailable in fMRI studies. Methods reliant on independent component analysis, on the other hand, need prior knowledge about the number of components. Machine learning techniques, although showing potential, are still in the early stages of development and require additional validation. This article reviews the mechanics of physiological confound correction methods, scrutinizes their performance and limitations, and discusses their impact on fMRI studies.

Machine learning approaches for fine-grained symptom estimation in schizophrenia: A comprehensive review.

Foteinopoulou NM, Patras I

pubmed logopapersJul 1 2025
Schizophrenia is a severe yet treatable mental disorder, and it is diagnosed using a multitude of primary and secondary symptoms. Diagnosis and treatment for each individual depends on the severity of the symptoms. Therefore, there is a need for accurate, personalised assessments. However, the process can be both time-consuming and subjective; hence, there is a motivation to explore automated methods that can offer consistent diagnosis and precise symptom assessments, thereby complementing the work of healthcare practitioners. Machine Learning has demonstrated impressive capabilities across numerous domains, including medicine; the use of Machine Learning in patient assessment holds great promise for healthcare professionals and patients alike, as it can lead to more consistent and accurate symptom estimation. This survey reviews methodologies utilising Machine Learning for diagnosing and assessing schizophrenia. Contrary to previous reviews that primarily focused on binary classification, this work recognises the complexity of the condition and, instead, offers an overview of Machine Learning methods designed for fine-grained symptom estimation. We cover multiple modalities, namely Medical Imaging, Electroencephalograms and Audio-Visual, as the illness symptoms can manifest in a patient's pathology and behaviour. Finally, we analyse the datasets and methodologies used in the studies and identify trends, gaps, as opportunities for future research.

Novel artificial intelligence approach in neurointerventional practice: Preliminary findings on filter movement and ischemic lesions in carotid artery stenting.

Sagawa H, Sakakura Y, Hanazawa R, Takahashi S, Wakabayashi H, Fujii S, Fujita K, Hirai S, Hirakawa A, Kono K, Sumita K

pubmed logopapersJul 1 2025
Embolic protection devices (EPDs) used during carotid artery stenting (CAS) are crucial in reducing ischemic complications. Although minimizing the filter-type EPD movement is considered important, limited research has demonstrated this practice. We used an artificial intelligence (AI)-based device recognition technology to investigate the correlation between filter movements and ischemic complications. We retrospectively studied 28 consecutive patients who underwent CAS using FilterWire EZ (Boston Scientific, Marlborough, MA, USA) from April 2022 to September 2023. Clinical data, procedural videos, and postoperative magnetic resonance imaging were collected. An AI-based device detection function in the Neuro-Vascular Assist (iMed Technologies, Tokyo, Japan) was used to quantify the filter movement. Multivariate proportional odds model analysis was performed to explore the correlations between postoperative diffusion-weighted imaging (DWI) hyperintense lesions and potential ischemic risk factors, including filter movement. In total, 23 patients had sufficient information and were eligible for quantitative analysis. Fourteen patients (60.9 %) showed postoperative DWI hyperintense lesions. Multivariate analysis revealed significant associations between filter movement distance (odds ratio, 1.01; 95 % confidence interval, 1.00-1.02; p = 0.003) and high-intensity signals in time-of-flight magnetic resonance angiography with DWI hyperintense lesions. Age, symptomatic status, and operative time were not significantly correlated. Increased filter movement during CAS was correlated with a higher incidence of postoperative DWI hyperintense lesions. AI-based quantitative evaluation of endovascular techniques may enable demonstration of previously unproven recommendations. To the best of our knowledge, this is the first study to use an AI system for quantitative evaluation to address real-world clinical issues.

Challenges, optimization strategies, and future horizons of advanced deep learning approaches for brain lesion segmentation.

Zaman A, Yassin MM, Mehmud I, Cao A, Lu J, Hassan H, Kang Y

pubmed logopapersJul 1 2025
Brain lesion segmentation is challenging in medical image analysis, aiming to delineate lesion regions precisely. Deep learning (DL) techniques have recently demonstrated promising results across various computer vision tasks, including semantic segmentation, object detection, and image classification. This paper offers an overview of recent DL algorithms for brain tumor and stroke segmentation, drawing on literature from 2021 to 2024. It highlights the strengths, limitations, current research challenges, and unexplored areas in imaging-based brain lesion classification based on insights from over 250 recent review papers. Techniques addressing difficulties like class imbalance and multi-modalities are presented. Optimization methods for improving performance regarding computational and structural complexity and processing speed are discussed. These include lightweight neural networks, multilayer architectures, and computationally efficient, highly accurate network designs. The paper also reviews generic and latest frameworks of different brain lesion detection techniques and highlights publicly available benchmark datasets and their issues. Furthermore, open research areas, application prospects, and future directions for DL-based brain lesion classification are discussed. Future directions include integrating neural architecture search methods with domain knowledge, predicting patient survival levels, and learning to separate brain lesions using patient statistics. To ensure patient privacy, future research is anticipated to explore privacy-preserving learning frameworks. Overall, the presented suggestions serve as a guideline for researchers and system designers involved in brain lesion detection and stroke segmentation tasks.
Page 2 of 53522 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.