Sort by:
Page 172 of 1781774 results

Application of Artificial Intelligence to Deliver Healthcare From the Eye.

Weinreb RN, Lee AY, Baxter SL, Lee RWJ, Leng T, McConnell MV, El-Nimri NW, Rhew DC

pubmed logopapersMay 8 2025
Oculomics is the science of analyzing ocular data to identify, diagnose, and manage systemic disease. This article focuses on prescreening, its use with retinal images analyzed by artificial intelligence (AI), to identify ocular or systemic disease or potential disease in asymptomatic individuals. The implementation of prescreening in a coordinated care system, defined as Healthcare From the Eye prescreening, has the potential to improve access, affordability, equity, quality, and safety of health care on a global level. Stakeholders include physicians, payers, policymakers, regulators and representatives from industry, government, and data privacy sectors. The combination of AI analysis of ocular data with automated technologies that capture images during routine eye examinations enables prescreening of large populations for chronic disease. Retinal images can be acquired during either a routine eye examination or in settings outside of eye care with readily accessible, safe, quick, and noninvasive retinal imaging devices. The outcome of such an examination can then be digitally communicated across relevant stakeholders in a coordinated fashion to direct a patient to screening and monitoring services. Such an approach offers the opportunity to transform health care delivery and improve early disease detection, improve access to care, enhance equity especially in rural and underserved communities, and reduce costs. With effective implementation and collaboration among key stakeholders, this approach has the potential to contribute to an equitable and effective health care system.

MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis.

Pei D, Ma Z, Qiu Y, Wang M, Wang Z, Liu X, Zhang L, Zhang Z, Li R, Yan D

pubmed logopapersMay 8 2025
Gliomas are the most prevalent and aggressive neoplasms of the central nervous system, representing a major challenge for effective treatment and patient prognosis. This study identifies the proteasome subunit beta type-8 (PSMB8/LMP7) as a promising prognostic biomarker for glioma. Using a multiparametric radiomic model derived from preoperative magnetic resonance imaging (MRI), we accurately predicted PSMB8 expression levels. Notably, radiomic prediction of poor prognosis was highly consistent with elevated PSMB8 expression. Our findings demonstrate that PSMB8 depletion not only suppressed glioma cell proliferation and migration but also induced apoptosis via activation of the transforming growth factor beta (TGF-β) signaling pathway. This was supported by downregulation of key receptors (TGFBR1 and TGFBR2). Furthermore, interference with PSMB8 expression impaired phosphorylation and nuclear translocation of SMAD2/3, critical mediators of TGF-β signaling. Consequently, these molecular alterations resulted in reduced tumor progression and enhanced sensitivity to temozolomide (TMZ), a standard chemotherapeutic agent. Overall, our findings highlight PSMB8's pivotal role in glioma pathophysiology and its potential as a prognostic marker. This study also demonstrates the clinical utility of MRI radiomics for preoperative risk stratification and pre-diagnosis. Targeted inhibition of PSMB8 may represent a therapeutic strategy to overcome TMZ resistance and improve glioma patient outcomes.

Are Diffusion Models Effective Good Feature Extractors for MRI Discriminative Tasks?

Li B, Sun Z, Li C, Kamagata K, Andica C, Uchida W, Takabayashi K, Guo S, Zou R, Aoki S, Tanaka T, Zhao Q

pubmed logopapersMay 8 2025
Diffusion models (DMs) excel in pixel-level and spatial tasks and are proven feature extractors for 2D image discriminative tasks when pretrained. However, their capabilities in 3D MRI discriminative tasks remain largely untapped. This study seeks to assess the effectiveness of DMs in this underexplored area. We use 59830 T1-weighted MR images (T1WIs) from the extensive, yet unlabeled, UK Biobank dataset. Additionally, we apply 369 T1WIs from the BraTS2020 dataset specifically for brain tumor classification, and 421 T1WIs from the ADNI1 dataset for the diagnosis of Alzheimer's disease. Firstly, a high-performing denoising diffusion probabilistic model (DDPM) with a U-Net backbone is pretrained on the UK Biobank, then fine-tuned on the BraTS2020 and ADNI1 datasets. Afterward, we assess its feature representation capabilities for discriminative tasks using linear probes. Finally, we accordingly introduce a novel fusion module, named CATS, that enhances the U-Net representations, thereby improving performance on discriminative tasks. Our DDPM produces synthetic images of high quality that match the distribution of the raw datasets. Subsequent analysis reveals that DDPM features extracted from middle blocks and smaller timesteps are of high quality. Leveraging these features, the CATS module, with just 1.7M additional parameters, achieved average classification scores of 0.7704 and 0.9217 on the BraTS2020 and ADNI1 datasets, demonstrating competitive performance with that of the representations extracted from the transferred DDPM model, as well as the 33.23M parameters ResNet18 trained from scratch. We have found that pretraining a DM on a large-scale dataset and then fine-tuning it on limited data from discriminative datasets is a viable approach for MRI data. With these well-performing DMs, we show that they excel not just in generation tasks but also as feature extractors when combined with our proposed CATS module.

Improved Brain Tumor Detection in MRI: Fuzzy Sigmoid Convolution in Deep Learning

Muhammad Irfan, Anum Nawaz, Riku Klen, Abdulhamit Subasi, Tomi Westerlund, Wei Chen

arxiv logopreprintMay 8 2025
Early detection and accurate diagnosis are essential to improving patient outcomes. The use of convolutional neural networks (CNNs) for tumor detection has shown promise, but existing models often suffer from overparameterization, which limits their performance gains. In this study, fuzzy sigmoid convolution (FSC) is introduced along with two additional modules: top-of-the-funnel and middle-of-the-funnel. The proposed methodology significantly reduces the number of trainable parameters without compromising classification accuracy. A novel convolutional operator is central to this approach, effectively dilating the receptive field while preserving input data integrity. This enables efficient feature map reduction and enhances the model's tumor detection capability. In the FSC-based model, fuzzy sigmoid activation functions are incorporated within convolutional layers to improve feature extraction and classification. The inclusion of fuzzy logic into the architecture improves its adaptability and robustness. Extensive experiments on three benchmark datasets demonstrate the superior performance and efficiency of the proposed model. The FSC-based architecture achieved classification accuracies of 99.17%, 99.75%, and 99.89% on three different datasets. The model employs 100 times fewer parameters than large-scale transfer learning architectures, highlighting its computational efficiency and suitability for detecting brain tumors early. This research offers lightweight, high-performance deep-learning models for medical imaging applications.

Impact of spectrum bias on deep learning-based stroke MRI analysis.

Krag CH, Müller FC, Gandrup KL, Plesner LL, Sagar MV, Andersen MB, Nielsen M, Kruuse C, Boesen M

pubmed logopapersMay 8 2025
To evaluate spectrum bias in stroke MRI analysis by excluding cases with uncertain acute ischemic lesions (AIL) and examining patient, imaging, and lesion factors associated with these cases. This single-center retrospective observational study included adults with brain MRIs for suspected stroke between January 2020 and April 2022. Diagnostic uncertain AIL were identified through reader disagreement or low certainty grading by a radiology resident, a neuroradiologist, and the original radiology report consisting of various neuroradiologists. A commercially available deep learning tool analyzing brain MRIs for AIL was evaluated to assess the impact of excluding uncertain cases on diagnostic odds ratios. Patient-related, MRI acquisition-related, and lesion-related factors were analyzed using the Wilcoxon rank sum test, χ2 test, and multiple logistic regression. The study was approved by the National Committee on Health Research Ethics. In 989 patients (median age 73 (IQR: 59-80), 53% female), certain AIL were found in 374 (38%), uncertain AIL in 63 (6%), and no AIL in 552 (56%). Excluding uncertain cases led to a four-fold increase in the diagnostic odds ratio (from 68 to 278), while a simulated case-control design resulted in a six-fold increase compared to the full disease spectrum (from 68 to 431). Independent factors associated with uncertain AIL were MRI artifacts, smaller lesion size, older lesion age, and infratentorial location. Excluding uncertain cases leads to a four-fold overestimation of the diagnostic odds ratio. MRI artifacts, smaller lesion size, infratentorial location, and older lesion age are associated with uncertain AIL and should be accounted for in validation studies.

Cross-scale prediction of glioblastoma MGMT methylation status based on deep learning combined with magnetic resonance images and pathology images

Wu, X., Wei, W., Li, Y., Ma, M., Hu, Z., Xu, Y., Hu, W., Chen, G., Zhao, R., Kang, X., Yin, H., Xi, Y.

medrxiv logopreprintMay 8 2025
BackgroundIn glioblastoma (GBM), promoter methylation of the O6-methylguanine-DNA methyltransferase (MGMT) is associated with beneficial chemotherapy but has not been accurately evaluated based on radiological and pathological sections. To develop and validate an MRI and pathology image-based deep learning radiopathomics model for predicting MGMT promoter methylation in patients with GBM. MethodsA retrospective collection of pathologically confirmed isocitrate dehydrogenase (IDH) wild-type GBM patients (n=207) from three centers was performed, all of whom underwent MRI scanning within 2 weeks prior to surgery. The pre-trained ResNet50 was used as the feature extractor. Features of 1024 dimensions were extracted from MRI and pathological images, respectively, and the features were screened for modeling. Then feature fusion was performed by calculating the normalized multimode MRI fusion features and pathological features, and prediction models of MGMT based on deep learning radiomics, pathomics, and radiopathomics (DLRM, DLPM, DLRPM) were constructed and applied to internal and external validation cohorts. ResultsIn the training, internal and external validation cohorts, the DLRPM further improved the predictive performance, with a significantly better predictive performance than the DLRM and DLPM, with AUCs of 0.920 (95% CI 0.870-0.968), 0.854 (95% CI 0.702-1), and 0.840 (95% CI 0.625-1). ConclusionWe developed and validated cross-scale radiology and pathology models for predicting MGMT methylation status, with DLRPM predicting the best performance, and this cross-scale approach paves the way for further research and clinical applications in the future.

Neuroanatomical-Based Machine Learning Prediction of Alzheimer's Disease Across Sex and Age

Jogeshwar, B. K., Lu, S., Nephew, B. C.

medrxiv logopreprintMay 7 2025
Alzheimers Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. In 2024, in the US alone, it affected approximately 1 in 9 people aged 65 and older, equivalent to 6.9 million individuals. Early detection and accurate AD diagnosis are crucial for improving patient outcomes. Magnetic resonance imaging (MRI) has emerged as a valuable tool for examining brain structure and identifying potential AD biomarkers. This study performs predictive analyses by employing machine learning techniques to identify key brain regions associated with AD using numerical data derived from anatomical MRI scans, going beyond standard statistical methods. Using the Random Forest Algorithm, we achieved 92.87% accuracy in detecting AD from Mild Cognitive Impairment and Cognitive Normals. Subgroup analyses across nine sex- and age-based cohorts (69-76 years, 77-84 years, and unified 69-84 years) revealed the hippocampus, amygdala, and entorhinal cortex as consistent top-rank predictors. These regions showed distinct volume reductions across age and sex groups, reflecting distinct age- and sex-related neuroanatomical patterns. For instance, younger males and females (aged 69-76) exhibited volume decreases in the right hippocampus, suggesting its importance in the early stages of AD. Older males (77-84) showed substantial volume decreases in the left inferior temporal cortex. Additionally, the left middle temporal cortex showed decreased volume in females, suggesting a potential female-specific influence, while the right entorhinal cortex may have a male-specific impact. These age-specific sex differences could inform clinical research and treatment strategies, aiding in identifying neuroanatomical markers and therapeutic targets for future clinical interventions.

Interpretable MRI-Based Deep Learning for Alzheimer's Risk and Progression

Lu, B., Chen, Y.-R., Li, R.-X., Zhang, M.-K., Yan, S.-Z., Chen, G.-Q., Castellanos, F. X., Thompson, P. M., Lu, J., Han, Y., Yan, C.-G.

medrxiv logopreprintMay 7 2025
Timely intervention for Alzheimers disease (AD) requires early detection. The development of immunotherapies targeting amyloid-beta and tau underscores the need for accessible, time-efficient biomarkers for early diagnosis. Here, we directly applied our previously developed MRI-based deep learning model for AD to the large Chinese SILCODE cohort (722 participants, 1,105 brain MRI scans). The model -- initially trained on North American data -- demonstrated robust cross-ethnic generalization, without any retraining or fine-tuning, achieving an AUC of 91.3% in AD classification with a sensitivity of 95.2%. It successfully identified 86.7% of individuals at risk of AD progression more than 5 years in advance. Individuals identified as high-risk exhibited significantly shorter median progression times. By integrating an interpretable deep learning brain risk map approach, we identified AD brain subtypes, including an MCI subtype associated with rapid cognitive decline. The models risk scores showed significant correlations with cognitive measures and plasma biomarkers, such as tau proteins and neurofilament light chain (NfL). These findings underscore the exceptional generalizability and clinical utility of MRI-based deep learning models, especially in large and diverse populations, offering valuable tools for early therapeutic intervention. The model has been made open-source and deployed to a free online website for AD risk prediction, to assist in early screening and intervention.

MRI-based multimodal AI model enables prediction of recurrence risk and adjuvant therapy in breast cancer.

Yu Y, Ren W, Mao L, Ouyang W, Hu Q, Yao Q, Tan Y, He Z, Ban X, Hu H, Lin R, Wang Z, Chen Y, Wu Z, Chen K, Ouyang J, Li T, Zhang Z, Liu G, Chen X, Li Z, Duan X, Wang J, Yao H

pubmed logopapersMay 7 2025
Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study introduces an advanced multimodal MRI and AI-driven 3D deep learning model, termed the 3D-MMR-model, designed to predict recurrence risk in non-metastatic breast cancer patients. We conducted a multicenter study involving 1199 non-metastatic breast cancer patients from four institutions in China, with comprehensive MRI and clinical data retrospectively collected. Our model employed multimodal-data fusion, utilizing contrast-enhanced T1-weighted imaging (T1 + C) and T2-weighted imaging (T2WI) volumes, processed through a modified 3D-UNet for tumor segmentation and a DenseNet121-based architecture for disease-free survival (DFS) prediction. Additionally, we performed RNA-seq analysis to delve further into the relationship between concentrated hotspots within the tumor region and the tumor microenvironment. The 3D-MR-model demonstrated superior predictive performance, with time-dependent ROC analysis yielding AUC values of 0.90, 0.89, and 0.88 for 2-, 3-, and 4-year DFS predictions, respectively, in the training cohort. External validation cohorts corroborated these findings, highlighting the model's robustness across diverse clinical settings. Integration of clinicopathological features further enhanced the model's accuracy, with a multimodal approach significantly improving risk stratification and decision-making in clinical practice. Visualization techniques provided insights into the decision-making process, correlating predictions with tumor microenvironment characteristics. In summary, the 3D-MMR-model represents a significant advancement in breast cancer prognosis, combining cutting-edge AI technology with multimodal imaging to deliver precise and clinically relevant predictions of recurrence risk. This innovative approach holds promise for enhancing patient outcomes and guiding individualized treatment plans in breast cancer care.

Artificial Intelligence based radiomic model in Craniopharyngiomas: A Systematic Review and Meta-Analysis on Diagnosis, Segmentation, and Classification.

Mohammadzadeh I, Hajikarimloo B, Niroomand B, Faizi N, Faizi N, Habibi MA, Mohammadzadeh S, Soltani R

pubmed logopapersMay 7 2025
Craniopharyngiomas (CPs) are rare, benign brain tumors originating from Rathke's pouch remnants, typically located in the sellar/parasellar region. Accurate differentiation is crucial due to varying prognoses, with ACPs having higher recurrence and worse outcomes. MRI struggles with overlapping features, complicating diagnosis. this study evaluates the role of Artificial Intelligence (AI) in diagnosing, segmenting, and classifying CPs, emphasizing its potential to improve clinical decision-making, particularly for radiologists and neurosurgeons. This systematic review and meta-analysis assess AI applications in diagnosing, segmenting, and classifying on CPs patients. a comprehensive search was conducted across PubMed, Scopus, Embase and Web of Science for studies employing AI models in patients with CP. Performance metrics such as sensitivity, specificity, accuracy, and area under the curve (AUC) were extracted and synthesized. Eleven studies involving 1916 patients were included in the analysis. The pooled results revealed a sensitivity of 0.740 (95% CI: 0.673-0.808), specificity of 0.813 (95% CI: 0.729-0.898), and accuracy of 0.746 (95% CI: 0.679-0.813). The area under the curve (AUC) for diagnosis was 0.793 (95% CI: 0.719-0.866), and for classification, it was 0.899 (95% CI: 0.846-0.951). The sensitivity for segmentation was found to be 0.755 (95% CI: 0.704-0.805). AI-based models show strong potential in enhancing the diagnostic accuracy and clinical decision-making process for CPs. These findings support the use of AI tools for more reliable preoperative assessment, leading to better treatment planning and patient outcomes. Further research with larger datasets is needed to optimize and validate AI applications in clinical practice.
Page 172 of 1781774 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.