Sort by:
Page 17 of 58575 results

Diabetic Tibial Neuropathy Prediction: Improving interpretability of Various Machine-Learning Models Based on Multimodal-Ultrasound Features Using SHAP Methodology.

Chen Y, Sun Z, Zhong H, Chen Y, Wu X, Su L, Lai Z, Zheng T, Lyu G, Su Q

pubmed logopapersJul 12 2025
This study aimed to develop and evaluate eight machine learning models based on multimodal ultrasound to precisely predict of diabetic tibial neuropathy (DTN) in patients. Additionally, the SHapley Additive exPlanations(SHAP)framework was introduced to quantify the importance of each feature variable, providing a precise and noninvasive assessment tool for DTN patients, optimizing clinical management strategies, and enhancing patient prognosis. A prospective analysis was conducted using multimodal ultrasound and clinical data from 255 suspected DTN patients who visited the Second Affiliated Hospital of Fujian Medical University between January 2024 and November 2024. Key features were selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Predictive models were constructed using Extreme Gradient Boosting (XGB), Logistic Regression, Support Vector Machines, k-Nearest Neighbors, Random Forest, Decision Tree, Naïve Bayes, and Neural Network. The SHAP method was employed to refine model interpretability. Furthermore, in order to verify the generalization degree of the model, this study also collected 135 patients from three other tertiary hospitals for external test. LASSO regression identified Echo intensity(EI), Cross-sectional area (CSA), Mean elasticity value(Emean), Superb microvascular imaging(SMI), and History of smoking were key features for DTN prediction. The XGB model achieved an Area Under the Curve (AUC) of 0.94, 0.83 and 0.79 in the training, internal test and external test sets, respectively. SHAP analysis highlighted the ranking significance of EI, CSA, Emean, SMI, and History of smoking. Personalized prediction explanations provided by theSHAP values demonstrated the contribution of each feature to the final prediction, and enhancing model interpretability. Furthermore, decision plots depicted how different features influenced mispredictions, thereby facilitating further model optimization or feature adjustment. This study proposed a DTN prediction model based on machine-learning algorithms applied to multimodal ultrasound data. The results indicated the superior performance of the XGB model and its interpretability was enhanced using SHAP analysis. This cost-effective and user-friendly approach provides potential support for personalized treatment and precision medicine for DTN.

Integrating LLMs into Radiology Education: An Interpretation-Centric Framework for Enhanced Learning While Supporting Workflow.

Lyo SK, Cook TS

pubmed logopapersJul 12 2025
Radiology education is challenged by increasing clinical workloads, limiting trainee supervision time and hindering real-time feedback. Large language models (LLMs) can enhance radiology education by providing real-time guidance, feedback, and educational resources while supporting efficient clinical workflows. We present an interpretation-centric framework for integrating LLMs into radiology education subdivided into distinct phases spanning pre-dictation preparation, active dictation support, and post-dictation analysis. In the pre-dictation phase, LLMs can analyze clinical data and provide context-aware summaries of each case, suggest relevant educational resources, and triage cases based on their educational value. In the active dictation phase, LLMs can provide real-time educational support through processes such as differential diagnosis support, completeness guidance, classification schema assistance, structured follow-up guidance, and embedded educational resources. In the post-dictation phase, LLMs can be used to analyze discrepancies between trainee and attending reports, identify areas for improvement, provide targeted educational recommendations, track trainee performance over time, and analyze the radiologic entities that trainees encounter. This framework offers a comprehensive approach to integrating LLMs into radiology education, with the potential to enhance trainee learning while preserving clinical efficiency.

Implementing Large Language Models in Health Care: Clinician-Focused Review With Interactive Guideline.

Li H, Fu JF, Python A

pubmed logopapersJul 11 2025
Large language models (LLMs) can generate outputs understandable by humans, such as answers to medical questions and radiology reports. With the rapid development of LLMs, clinicians face a growing challenge in determining the most suitable algorithms to support their work. We aimed to provide clinicians and other health care practitioners with systematic guidance in selecting an LLM that is relevant and appropriate to their needs and facilitate the integration process of LLMs in health care. We conducted a literature search of full-text publications in English on clinical applications of LLMs published between January 1, 2022, and March 31, 2025, on PubMed, ScienceDirect, Scopus, and IEEE Xplore. We excluded papers from journals below a set citation threshold, as well as papers that did not focus on LLMs, were not research based, or did not involve clinical applications. We also conducted a literature search on arXiv within the same investigated period and included papers on the clinical applications of innovative multimodal LLMs. This led to a total of 270 studies. We collected 330 LLMs and recorded their application frequency in clinical tasks and frequency of best performance in their context. On the basis of a 5-stage clinical workflow, we found that stages 2, 3, and 4 are key stages in the clinical workflow, involving numerous clinical subtasks and LLMs. However, the diversity of LLMs that may perform optimally in each context remains limited. GPT-3.5 and GPT-4 were the most versatile models in the 5-stage clinical workflow, applied to 52% (29/56) and 71% (40/56) of the clinical subtasks, respectively, and they performed best in 29% (16/56) and 54% (30/56) of the clinical subtasks, respectively. General-purpose LLMs may not perform well in specialized areas as they often require lightweight prompt engineering methods or fine-tuning techniques based on specific datasets to improve model performance. Most LLMs with multimodal abilities are closed-source models and, therefore, lack of transparency, model customization, and fine-tuning for specific clinical tasks and may also pose challenges regarding data protection and privacy, which are common requirements in clinical settings. In this review, we found that LLMs may help clinicians in a variety of clinical tasks. However, we did not find evidence of generalist clinical LLMs successfully applicable to a wide range of clinical tasks. Therefore, their clinical deployment remains challenging. On the basis of this review, we propose an interactive online guideline for clinicians to select suitable LLMs by clinical task. With a clinical perspective and free of unnecessary technical jargon, this guideline may be used as a reference to successfully apply LLMs in clinical settings.

Automated MRI protocoling in neuroradiology in the era of large language models.

Reiner LN, Chelbi M, Fetscher L, Stöckel JC, Csapó-Schmidt C, Guseynova S, Al Mohamad F, Bressem KK, Nawabi J, Siebert E, Wattjes MP, Scheel M, Meddeb A

pubmed logopapersJul 11 2025
This study investigates the automation of MRI protocoling, a routine task in radiology, using large language models (LLMs), comparing an open-source (LLama 3.1 405B) and a proprietary model (GPT-4o) with and without retrieval-augmented generation (RAG), a method for incorporating domain-specific knowledge. This retrospective study included MRI studies conducted between January and December 2023, along with institution-specific protocol assignment guidelines. Clinical questions were extracted, and a neuroradiologist established the gold standard protocol. LLMs were tasked with assigning MRI protocols and contrast medium administration with and without RAG. The results were compared to protocols selected by four radiologists. Token-based symmetric accuracy, the Wilcoxon signed-rank test, and the McNemar test were used for evaluation. Data from 100 neuroradiology reports (mean age = 54.2 years ± 18.41, women 50%) were included. RAG integration significantly improved accuracy in sequence and contrast media prediction for LLama 3.1 (Sequences: 38% vs. 70%, P < .001, Contrast Media: 77% vs. 94%, P < .001), and GPT-4o (Sequences: 43% vs. 81%, P < .001, Contrast Media: 79% vs. 92%, P = .006). GPT-4o outperformed LLama 3.1 in MRI sequence prediction (81% vs. 70%, P < .001), with comparable accuracies to the radiologists (81% ± 0.21, P = .43). Both models equaled radiologists in predicting contrast media administration (LLama 3.1 RAG: 94% vs. 91% ± 0.2, P = .37, GPT-4o RAG: 92% vs. 91% ± 0.24, P = .48). Large language models show great potential as decision-support tools for MRI protocoling, with performance similar to radiologists. RAG enhances the ability of LLMs to provide accurate, institution-specific protocol recommendations.

[MP-MRI in the evaluation of non-operative treatment response, for residual and recurrent tumor detection in head and neck cancer].

Gődény M

pubmed logopapersJul 11 2025
As non-surgical therapies gain acceptance in head and neck tumors, the importance of imaging has increased. New therapeutic methods (in radiation therapy, targeted biological therapy, immunotherapy) need better tumor characterization and prognostic information along with the accurate anatomy. Magnetic resonance imaging (MRI) has become the gold standard in head and neck cancer evaluation not only for staging but also for assessing tumor response, posttreatment status and complications, as well as for finding residual or recurrent tumor. Multiparametric anatomical and functional MRI (MP-MRI) is a true cancer imaging biomarker providing, in addition to high resolution tumor anatomy, more molecular and functional, qualitative and quantitative data using diffusion- weighted MRI (DW-MRI) and perfusion-dynamic contrast enhanced MRI (P-DCE-MRI), can improve the assessment of biological target volume and determine treatment response. DW-MRI provides information at the cellular level about the cell density and the integrity of the plasma membrane, based on water movement. P-DCE-MRI provides useful hemodynamic information about tissue vascularity and vascular permeability. Recent studies have shown promising results using radiomics features, MP-MRI has opened new perspectives in oncologic imaging with better realization of the latest technological advances with the help of artificial intelligence.

Multivariate whole brain neurodegenerative-cognitive-clinical severity mapping in the Alzheimer's disease continuum using explainable AI

Murad, T., Miao, H., Thakuri, D. S., Darekar, G., Chand, G.

medrxiv logopreprintJul 11 2025
Neurodegeneration and cognitive impairment are commonly reported in Alzheimers disease (AD); however, their multivariate links are not well understood. To map the multivariate relationships between whole brain neurodegenerative (WBN) markers, global cognition, and clinical severity in the AD continuum, we developed the explainable artificial intelligence (AI) methods, validated on semi-simulated data, and applied the outperforming method systematically to large-scale experimental data (N=1,756). The outperforming explainable AI method showed robust performance in predicting cognition from regional WBN markers and identified the ground-truth simulated dominant brain regions contributing to cognition. This method also showed excellent performance on experimental data and identified several prominent WBN regions hierarchically and simultaneously associated with cognitive declines across the AD continuum. These multivariate regional features also correlated with clinical severity, suggesting their clinical relevance. Overall, this study innovatively mapped the multivariate regional WBN-cognitive-clinical severity relationships in the AD continuum, thereby significantly advancing AD-relevant neurobiological pathways.

Data Extraction and Curation from Radiology Reports for Pancreatic Cyst Surveillance Using Large Language Models.

Choubey AP, Eguia E, Hollingsworth A, Chatterjee S, D'Angelica MI, Jarnagin WR, Wei AC, Schattner MA, Do RKG, Soares KC

pubmed logopapersJul 10 2025
Manual curation of radiographic features in pancreatic cyst registries for data abstraction and longitudinal evaluation is time consuming and limits widespread implementation. We examined the feasibility and accuracy of using large language models (LLMs) to extract clinical variables from radiology reports. A single center retrospective study included patients under surveillance for pancreatic cysts. Nine radiographic elements used to monitor cyst progression were included: cyst size, main pancreatic duct (MPD) size (continuous variable), number of lesions, MPD dilation ≥5mm (categorical), branch duct dilation, presence of solid component, calcific lesion, pancreatic atrophy, and pancreatitis. LLMs (GPT) on the OpenAI GPT-4 platform were employed to extract elements of interest with a zero-shot learning approach using prompting to facilitate annotation without any training data. A manually annotated institutional cyst database was used as the ground truth (GT) for comparison. Overall, 3198 longitudinal scans from 991 patients were included. GPT successfully extracted the selected radiographic elements with high accuracy. Among categorical variables, accuracy ranged from 97% for solid component to 99% for calcific lesions. In the continuous variables, accuracy varied from 92% for cyst size to 97% for MPD size. However, Cohen's Kappa was higher for cyst size (0.92) compared to MPD size (0.82). Lowest accuracy (81%) was noted in the multi-class variable for number of cysts. LLM can accurately extract and curate data from radiology reports for pancreatic cyst surveillance and can be reliably used to assemble longitudinal databases. Future application of this work may potentiate the development of artificial intelligence-based surveillance models.

MeD-3D: A Multimodal Deep Learning Framework for Precise Recurrence Prediction in Clear Cell Renal Cell Carcinoma (ccRCC)

Hasaan Maqsood, Saif Ur Rehman Khan

arxiv logopreprintJul 10 2025
Accurate prediction of recurrence in clear cell renal cell carcinoma (ccRCC) remains a major clinical challenge due to the disease complex molecular, pathological, and clinical heterogeneity. Traditional prognostic models, which rely on single data modalities such as radiology, histopathology, or genomics, often fail to capture the full spectrum of disease complexity, resulting in suboptimal predictive accuracy. This study aims to overcome these limitations by proposing a deep learning (DL) framework that integrates multimodal data, including CT, MRI, histopathology whole slide images (WSI), clinical data, and genomic profiles, to improve the prediction of ccRCC recurrence and enhance clinical decision-making. The proposed framework utilizes a comprehensive dataset curated from multiple publicly available sources, including TCGA, TCIA, and CPTAC. To process the diverse modalities, domain-specific models are employed: CLAM, a ResNet50-based model, is used for histopathology WSIs, while MeD-3D, a pre-trained 3D-ResNet18 model, processes CT and MRI images. For structured clinical and genomic data, a multi-layer perceptron (MLP) is used. These models are designed to extract deep feature embeddings from each modality, which are then fused through an early and late integration architecture. This fusion strategy enables the model to combine complementary information from multiple sources. Additionally, the framework is designed to handle incomplete data, a common challenge in clinical settings, by enabling inference even when certain modalities are missing.

Breast Ultrasound Tumor Generation via Mask Generator and Text-Guided Network:A Clinically Controllable Framework with Downstream Evaluation

Haoyu Pan, Hongxin Lin, Zetian Feng, Chuxuan Lin, Junyang Mo, Chu Zhang, Zijian Wu, Yi Wang, Qingqing Zheng

arxiv logopreprintJul 10 2025
The development of robust deep learning models for breast ultrasound (BUS) image analysis is significantly constrained by the scarcity of expert-annotated data. To address this limitation, we propose a clinically controllable generative framework for synthesizing BUS images. This framework integrates clinical descriptions with structural masks to generate tumors, enabling fine-grained control over tumor characteristics such as morphology, echogencity, and shape. Furthermore, we design a semantic-curvature mask generator, which synthesizes structurally diverse tumor masks guided by clinical priors. During inference, synthetic tumor masks serve as input to the generative framework, producing highly personalized synthetic BUS images with tumors that reflect real-world morphological diversity. Quantitative evaluations on six public BUS datasets demonstrate the significant clinical utility of our synthetic images, showing their effectiveness in enhancing downstream breast cancer diagnosis tasks. Furthermore, visual Turing tests conducted by experienced sonographers confirm the realism of the generated images, indicating the framework's potential to support broader clinical applications.

An Enhanced Privacy-preserving Federated Few-shot Learning Framework for Respiratory Disease Diagnosis

Ming Wang, Zhaoyang Duan, Dong Xue, Fangzhou Liu, Zhongheng Zhang

arxiv logopreprintJul 10 2025
The labor-intensive nature of medical data annotation presents a significant challenge for respiratory disease diagnosis, resulting in a scarcity of high-quality labeled datasets in resource-constrained settings. Moreover, patient privacy concerns complicate the direct sharing of local medical data across institutions, and existing centralized data-driven approaches, which rely on amounts of available data, often compromise data privacy. This study proposes a federated few-shot learning framework with privacy-preserving mechanisms to address the issues of limited labeled data and privacy protection in diagnosing respiratory diseases. In particular, a meta-stochastic gradient descent algorithm is proposed to mitigate the overfitting problem that arises from insufficient data when employing traditional gradient descent methods for neural network training. Furthermore, to ensure data privacy against gradient leakage, differential privacy noise from a standard Gaussian distribution is integrated into the gradients during the training of private models with local data, thereby preventing the reconstruction of medical images. Given the impracticality of centralizing respiratory disease data dispersed across various medical institutions, a weighted average algorithm is employed to aggregate local diagnostic models from different clients, enhancing the adaptability of a model across diverse scenarios. Experimental results show that the proposed method yields compelling results with the implementation of differential privacy, while effectively diagnosing respiratory diseases using data from different structures, categories, and distributions.
Page 17 of 58575 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.