Sort by:
Page 158 of 2432424 results

White Box Modeling of Self-Determined Sequence Exercise Program Among Sarcopenic Older Adults: Uncovering a Novel Strategy Overcoming Decline of Skeletal Muscle Area.

Wei M, He S, Meng D, Lv Z, Guo H, Yang G, Wang Z

pubmed logopapersJun 27 2025
Resistance exercise, Taichi exercise, and the hybrid exercise program consisting of the two aforementioned methods have been demonstrated to increase the skeletal muscle mass of older individuals with sarcopenia. However, the exercise sequence has not been comprehensively investigated. Therefore, we designed a self-determined sequence exercise program, incorporating resistance exercises, Taichi, and the hybrid exercise program to overcome the decline of skeletal muscle area and reverse sarcopenia in older individuals. Ninety-one older patients with sarcopenia between the ages of 60 and 75 completed this three-stage randomized controlled trial for 24 weeks, including the self-determined sequence exercise program group (n = 31), the resistance training group (n = 30), and the control group (n = 30). We used quantitative computed tomography to measure the effects of different intervention protocols on skeletal muscle mass in participants. Participants' demographic variables were analyzed using one-way analysis of variance and chi-square tests, and experimental data were examined using repeated-measures analysis of variance. Furthermore, we utilized the Markov model to explain the effectiveness of the exercise programs among the three-stage intervention and explainable artificial intelligence to predict whether intervention programs can reverse sarcopenia. Repeated-measures analysis of variance results indicated that there were statistically significant Group × Time interactions detected in the L3 skeletal muscle density, L3 skeletal muscle area, muscle fat infiltration, handgrip strength, and relative skeletal muscle mass index. The stacking model exhibited the best accuracy (84.5%) and the best F1-score (68.8%) compared to other algorithms. In the self-determined sequence exercise program group, strength training contributed most to the reversal of sarcopenia. One self-determined sequence exercise program can improve skeletal muscle area among sarcopenic older people. Based on our stacking model, we can predict whether sarcopenia in older people can be reversed accurately. The trial was registered in ClinicalTrials.gov. TRN:NCT05694117. Our findings indicate that such tailored exercise interventions can substantially benefit sarcopenic patients, and our stacking model provides an accurate predictive tool for assessing the reversibility of sarcopenia in older adults. This approach not only enhances individual health outcomes but also informs future development of targeted exercise programs to mitigate age-related muscle decline.

HGTL: A hypergraph transfer learning framework for survival prediction of ccRCC.

Han X, Li W, Zhang Y, Li P, Zhu J, Zhang T, Wang R, Gao Y

pubmed logopapersJun 27 2025
The clinical diagnosis of clear cell renal cell carcinoma (ccRCC) primarily depends on histopathological analysis and computed tomography (CT). Although pathological diagnosis is regarded as the gold standard, invasive procedures such as biopsy carry the risk of tumor dissemination. Conversely, CT scanning offers a non-invasive alternative, but its resolution may be inadequate for detecting microscopic tumor features, which limits the performance of prognostic assessments. To address this issue, we propose a high-order correlation-driven method for predicting the survival of ccRCC using only CT images, achieving performance comparable to that of the pathological gold standard. The proposed method utilizes a cross-modal hypergraph neural network based on hypergraph transfer learning to perform high-order correlation modeling and semantic feature extraction from whole-slide pathological images and CT images. By employing multi-kernel maximum mean discrepancy, we transfer the high-order semantic features learned from pathological images to the CT-based hypergraph neural network channel. During the testing phase, high-precision survival predictions were achieved using only CT images, eliminating the need for pathological images. This approach not only reduces the risks associated with invasive examinations for patients but also significantly enhances clinical diagnostic efficiency. The proposed method was validated using four datasets: three collected from different hospitals and one from the public TCGA dataset. Experimental results indicate that the proposed method achieves higher concordance indices across all datasets compared to other methods.

Clinician-Led Code-Free Deep Learning for Detecting Papilloedema and Pseudopapilloedema Using Optic Disc Imaging

Shenoy, R., Samra, G. S., Sekhri, R., Yoon, H.-J., Teli, S., DeSilva, I., Tu, Z., Maconachie, G. D., Thomas, M. G.

medrxiv logopreprintJun 26 2025
ImportanceDifferentiating pseudopapilloedema from papilloedema is challenging, but critical for prompt diagnosis and to avoid unnecessary invasive procedures. Following diagnosis of papilloedema, objectively grading severity is important for determining urgency of management and therapeutic response. Automated machine learning (AutoML) has emerged as a promising tool for diagnosis in medical imaging and may provide accessible opportunities for consistent and accurate diagnosis and severity grading of papilloedema. ObjectiveThis study evaluates the feasibility of AutoML models for distinguishing the presence and severity of papilloedema using near infrared reflectance images (NIR) obtained from standard optical coherence tomography (OCT), comparing the performance of different AutoML platforms. Design, setting and participantsA retrospective cohort study was conducted using data from University Hospitals of Leicester, NHS Trust. The study involved 289 adults and children patients (813 images) who underwent optic nerve head-centred OCT imaging between 2021 and 2024. The dataset included patients with normal optic discs (69 patients, 185 images), papilloedema (135 patients, 372 images), and optic disc drusen (ODD) (85 patients, 256 images). AutoML platforms - Amazon Rekognition, Medic Mind (MM) and Google Vertex were evaluated for their ability to classify and grade papilloedema severity. Main outcomes and measuresTwo classification tasks were performed: (1) distinguishing papilloedema from normal discs and ODD; (2) grading papilloedema severity (mild/moderate vs. severe). Model performance was evaluated using area under the curve (AUC), precision, recall, F1 score, and confusion matrices for all six models. ResultsAmazon Rekognition outperformed the other platforms, achieving the highest AUC (0.90) and F1 score (0.81) in distinguishing papilloedema from normal/ODD. For papilloedema severity grading, Amazon Rekognition also performed best, with an AUC of 0.90 and F1 score of 0.79. Google Vertex and Medic Mind demonstrated good performance but had slightly lower accuracy and higher misclassification rates. Conclusions and relevanceThis evaluation of three widely available AutoML platforms using NIR images obtained from standard OCT shows promise in distinguishing and grading papilloedema. These models provide an accessible, scalable solution for clinical teams without coding expertise to feasibly develop intelligent diagnostic systems to recognise and characterise papilloedema. Further external validation and prospective testing is needed to confirm their clinical utility and applicability in diverse settings. Key PointsQuestion: Can clinician-led, code-free deep learning models using automated machine learning (AutoML) accurately differentiate papilloedema from pseudopapilloedema using optic disc imaging? Findings: Three widely available AutoML platforms were used to develop models that successfully distinguish the presence and severity of papilloedema on optic disc imaging, with Amazon Rekognition demonstrating the highest performance. Meaning: AutoML may assist clinical teams, even those with limited coding expertise, in diagnosing papilloedema, potentially reducing the need for invasive investigations.

MedPrompt: LLM-CNN Fusion with Weight Routing for Medical Image Segmentation and Classification

Shadman Sobhan, Kazi Abrar Mahmud, Abduz Zami

arxiv logopreprintJun 26 2025
Current medical image analysis systems are typically task-specific, requiring separate models for classification and segmentation, and lack the flexibility to support user-defined workflows. To address these challenges, we introduce MedPrompt, a unified framework that combines a few-shot prompted Large Language Model (Llama-4-17B) for high-level task planning with a modular Convolutional Neural Network (DeepFusionLab) for low-level image processing. The LLM interprets user instructions and generates structured output to dynamically route task-specific pretrained weights. This weight routing approach avoids retraining the entire framework when adding new tasks-only task-specific weights are required, enhancing scalability and deployment. We evaluated MedPrompt across 19 public datasets, covering 12 tasks spanning 5 imaging modalities. The system achieves a 97% end-to-end correctness in interpreting and executing prompt-driven instructions, with an average inference latency of 2.5 seconds, making it suitable for near real-time applications. DeepFusionLab achieves competitive segmentation accuracy (e.g., Dice 0.9856 on lungs) and strong classification performance (F1 0.9744 on tuberculosis). Overall, MedPrompt enables scalable, prompt-driven medical imaging by combining the interpretability of LLMs with the efficiency of modular CNNs.

Harnessing Generative AI for Lung Nodule Spiculation Characterization.

Wang Y, Patel C, Tchoua R, Furst J, Raicu D

pubmed logopapersJun 26 2025
Spiculation, characterized by irregular, spike-like projections from nodule margins, serves as a crucial radiological biomarker for malignancy assessment and early cancer detection. These distinctive stellate patterns strongly correlate with tumor invasiveness and are vital for accurate diagnosis and treatment planning. Traditional computer-aided diagnosis (CAD) systems are limited in their capability to capture and use these patterns given their subtlety, difficulty in quantifying them, and small datasets available to learn these patterns. To address these challenges, we propose a novel framework leveraging variational autoencoders (VAE) to discover, extract, and vary disentangled latent representations of lung nodule images. By gradually varying the latent representations of non-spiculated nodule images, we generate augmented datasets containing spiculated nodule variations that, we hypothesize, can improve the diagnostic classification of lung nodules. Using the National Institutes of Health/National Cancer Institute Lung Image Database Consortium (LIDC) dataset, our results show that incorporating these spiculated image variations into the classification pipeline significantly improves spiculation detection performance up to 7.53%. Notably, this enhancement in spiculation detection is achieved while preserving the classification performance of non-spiculated cases. This approach effectively addresses class imbalance and enhances overall classification outcomes. The gradual attenuation of spiculation characteristics demonstrates our model's ability to both capture and generate clinically relevant semantic features in an algorithmic manner. These findings suggest that the integration of semantic-based latent representations into CAD models not only enhances diagnostic accuracy but also provides insights into the underlying morphological progression of spiculated nodules, enabling more informed and clinically meaningful AI-driven support systems.

Development, deployment, and feature interpretability of a three-class prediction model for pulmonary diseases.

Cao Z, Xu G, Gao Y, Xu J, Tian F, Shi H, Yang D, Xie Z, Wang J

pubmed logopapersJun 26 2025
To develop a high-performance machine learning model for predicting and interpreting features of pulmonary diseases. This retrospective study analyzed clinical and imaging data from patients with non-small cell lung cancer (NSCLC), granulomatous inflammation, and benign tumors, collected across multiple centers from January 2015 to October 2023. Data from two hospitals in Anhui Province were split into a development set (n = 1696) and a test set (n = 424) in an 8:2 ratio, with an external validation set (n = 909) from Zhejiang Province. Features with p < 0.05 from univariate analyses were selected using the Boruta algorithm for input into Random Forest (RF) and XGBoost models. Model efficacy was assessed using receiver operating characteristic (ROC) analysis. A total of 3030 patients were included: 2269 with NSCLC, 529 with granulomatous inflammation, and 232 with benign tumors. The Obuchowski indices for RF and XGBoost in the test set were 0.7193 (95% CI: 0.6567-0.7812) and 0.8282 (95% CI: 0.7883-0.8650), respectively. In the external validation set, indices were 0.7932 (95% CI: 0.7572-0.8250) for RF and 0.8074 (95% CI: 0.7740-0.8387) for XGBoost. XGBoost achieved better accuracy in both the test (0.81) and external validation (0.79) sets. Calibration Curve and Decision Curve Analysis (DCA) showed XGBoost offered higher net clinical benefit. The XGBoost model outperforms RF in the three-class classification of lung diseases. XGBoost surpasses Random Forest in accurately classifying NSCLC, granulomatous inflammation, and benign tumors, offering superior clinical utility via multicenter data. Lung cancer classification model has broad clinical applicability. XGBoost outperforms random forests using CT imaging data. XGBoost model can be deployed on a website for clinicians.

Automated breast ultrasound features associated with diagnostic performance of Multiview convolutional neural network according to radiologists' experience.

Choi EJ, Wang Y, Choi H, Youk JH, Byon JH, Choi S, Ko S, Jin GY

pubmed logopapersJun 26 2025
To investigate automated breast ultrasound (ABUS) features affecting the use of Multiview convolutional neural network (CNN) for breast lesions according to radiologists' experience. A total of 656 breast lesions (152 malignant and 504 benign lesions) were included and reviewed by six radiologists for background echotexture, glandular tissue component (GTC), and lesion type and size without as well as with Multiview CNN. The sensitivity, specificity, and the area under the receiver operating curve (AUC) for ABUS features were compared between two sessions according to radiologists' experience. Radiology residents showed significant AUC improvement with the Multiview CNN for mass (0.81 to 0.91, P=0.003) and non-mass lesions (0.56 to 0.90, P=0.007), all background echotextures (homogeneous-fat: 0.84 to 0.94, P=0.04; homogeneous-fibroglandular: 0.85 to 0.93, P=0.01; heterogeneous: 0.68 to 0.88, P=0.002), all GTC levels (minimal: 0.86 to 0.93, P=0.001; mild: 0.82 to 0.94, P=0.003; moderate: 0.75 to 0.88, P=0.01; marked: 0.68 to 0.89, P<0.001), and lesions ≤10mm (≤5 mm: 0.69 to 0.86, P<0.001; 6-10 mm: 0.83 to 0.92, P<0.001). Breast specialists showed significant AUC improvement with the Multiview CNN in heterogeneous echotexture (0.90 to 0.95, P=0.03), marked GTC (0.88 to 0.95, P<0.001), and lesions ≤10mm (≤5 mm: 0.89 to 0.93, P=0.02; 6-10 mm: 0.95 to 0.98, P=0.01). With the Multiview CNN, the performance of ABUS in radiology residents was improved regardless of lesion type, background echotexture, or GTC. For breast lesions smaller than 10 mm, both radiology residents and breast specialists showed better performance of ABUS.

A machine learning model integrating clinical-radiomics-deep learning features accurately predicts postoperative recurrence and metastasis of primary gastrointestinal stromal tumors.

Xie W, Zhang Z, Sun Z, Wan X, Li J, Jiang J, Liu Q, Yang G, Fu Y

pubmed logopapersJun 26 2025
Post-surgical prediction of recurrence or metastasis for primary gastrointestinal stromal tumors (GISTs) remains challenging. We aim to develop individualized clinical follow-up strategies for primary GIST patients, such as shortening follow-up time or extending drug administration based on the clinical deep learning radiomics model (CDLRM). The clinical information on primary GISTs was collected from two independent centers. Postoperative recurrence or metastasis in GIST patients was defined as the endpoint of the study. A total of nine machine learning models were established based on the selected features. The performance of the models was assessed by calculating the area under the curve (AUC). The CDLRM with the best predictive performance was constructed. Decision curve analysis (DCA) and calibration curves were analyzed separately. Ultimately, our model was applied to the high-potential malignant group vs the low-malignant-potential group. The optimal clinical application scenarios of the model were further explored by comparing the DCA performance of the two subgroups. A total of 526 patients, 260 men and 266 women, with a mean age of 62 years, were enrolled in the study. CDLRM performed excellently with AUC values of 0.999, 0.963, and 0.995 for the training, external validation, and aggregated sets, respectively. The calibration curve indicated that CDLRM was in good agreement between predicted and observed probabilities in the validation cohort. The results of DCA's performance in different subgroups show that it was more clinically valuable in populations with high malignant potential. CDLRM could help the development of personalized treatment and improved follow-up of patients with a high probability of recurrence or metastasis in the future. This model utilizes imaging features extracted from CT scans (including radiomic features and deep features) and clinical data to accurately predict postoperative recurrence and metastasis in patients with primary GISTs, which has a certain auxiliary role in clinical decision-making. We developed and validated a model to predict recurrence or metastasis in patients taking oral imatinib after GIST. We demonstrate that CT image features were associated with recurrence or metastases. The model had good predictive performance and clinical benefit.

Deep Learning MRI Models for the Differential Diagnosis of Tumefactive Demyelination versus <i>IDH</i> Wild-Type Glioblastoma.

Conte GM, Moassefi M, Decker PA, Kosel ML, McCarthy CB, Sagen JA, Nikanpour Y, Fereidan-Esfahani M, Ruff MW, Guido FS, Pump HK, Burns TC, Jenkins RB, Erickson BJ, Lachance DH, Tobin WO, Eckel-Passow JE

pubmed logopapersJun 26 2025
Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and nontumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality. Tumefactive demyelination has imaging features that mimic <i>isocitrate dehydrogenase</i> wild-type glioblastoma (<i>IDH</i>wt GBM). We hypothesized that deep learning applied to postcontrast T1-weighted (T1C) and T2-weighted (T2) MRI can discriminate tumefactive demyelination from <i>IDH</i>wt GBM. Patients with tumefactive demyelination (<i>n</i> = 144) and <i>IDH</i>wt GBM (<i>n</i> = 455) were identified by clinical registries. A 3D DenseNet121 architecture was used to develop models to differentiate tumefactive demyelination and <i>IDH</i>wt GBM by using both T1C and T2 MRI, as well as only T1C and only T2 images. A 3-stage design was used: 1) model development and internal validation via 5-fold cross validation by using a sex-, age-, and MRI technology-matched set of tumefactive demyelination and <i>IDH</i>wt GBM, 2) validation of model specificity on independent <i>IDH</i>wt GBM, and 3) prospective validation on tumefactive demyelination and <i>IDH</i>wt GBM. Stratified area under the receiver operating curves (AUROCs) were used to evaluate model performance stratified by sex, age at diagnosis, MRI scanner strength, and MRI acquisition. The deep learning model developed by using both T1C and T2 images had a prospective validation AUROC of 88% (95% CI: 0.82-0.95). In the prospective validation stage, a model score threshold of 0.28 resulted in 91% sensitivity of correctly classifying tumefactive demyelination and 80% specificity (correctly classifying <i>IDH</i>wt GBM). Stratified AUROCs demonstrated that model performance may be improved if thresholds were chosen stratified by age and MRI acquisition. MRI can provide the basis for applying deep learning models to aid in the differential diagnosis of brain lesions. Further validation is needed to evaluate how well the model generalizes across institutions, patient populations, and technology, and to evaluate optimal thresholds for classification. Next steps also should incorporate additional tumor etiologies such as CNS lymphoma and brain metastases.

Machine Learning Models for Predicting Mortality in Pneumonia Patients.

Pavlovic V, Haque MS, Grubor N, Pavlovic A, Stanisavljevic D, Milic N

pubmed logopapersJun 26 2025
Pneumonia remains a significant cause of hospital mortality, prompting the need for precise mortality prediction methods. This study conducted a systematic review identifying predictors of mortality using Machine Learning (ML) and applied these methods to hospitalized pneumonia patients at the University Clinical Centre Zvezdara. The systematic review identified 16 studies (313,572 patients), revealing common mortality predictors including age, oxygen levels, and albumin. A Random Forest (RF) model was developed using local data (n=343), achieving an accuracy of 99%, and AUC of 0.99. Key predictors identified were chest X-ray worsening, ventilator use, age, and oxygen support. ML demonstrated high potential for accurately predicting pneumonia mortality, surpassing traditional severity scores, and highlighting its practical clinical utility.
Page 158 of 2432424 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.