Sort by:
Page 15 of 35341 results

Radiology report generation using automatic keyword adaptation, frequency-based multi-label classification and text-to-text large language models.

He Z, Wong ANN, Yoo JS

pubmed logopapersJul 3 2025
Radiology reports are essential in medical imaging, providing critical insights for diagnosis, treatment, and patient management by bridging the gap between radiologists and referring physicians. However, the manual generation of radiology reports is time-consuming and labor-intensive, leading to inefficiencies and delays in clinical workflows, particularly as case volumes increase. Although deep learning approaches have shown promise in automating radiology report generation, existing methods, particularly those based on the encoder-decoder framework, suffer from significant limitations. These include a lack of explainability due to black-box features generated by encoder and limited adaptability to diverse clinical settings. In this study, we address these challenges by proposing a novel deep learning framework for radiology report generation that enhances explainability, accuracy, and adaptability. Our approach replaces traditional black-box features in computer vision with transparent keyword lists, improving the interpretability of the feature extraction process. To generate these keyword lists, we apply a multi-label classification technique, which is further enhanced by an automatic keyword adaptation mechanism. This adaptation dynamically configures the multi-label classification to better adapt specific clinical environments, reducing the reliance on manually curated reference keyword lists and improving model adaptability across diverse datasets. We also introduce a frequency-based multi-label classification strategy to address the issue of keyword imbalance, ensuring that rare but clinically significant terms are accurately identified. Finally, we leverage a pre-trained text-to-text large language model (LLM) to generate human-like, clinically relevant radiology reports from the extracted keyword lists, ensuring linguistic quality and clinical coherence. We evaluate our method using two public datasets, IU-XRay and MIMIC-CXR, demonstrating superior performance over state-of-the-art methods. Our framework not only improves the accuracy and reliability of radiology report generation but also enhances the explainability of the process, fostering greater trust and adoption of AI-driven solutions in clinical practice. Comprehensive ablation studies confirm the robustness and effectiveness of each component, highlighting the significant contributions of our framework to advancing automated radiology reporting. In conclusion, we developed a novel deep-learning based radiology report generation method for preparing high-quality and explainable radiology report for chest X-ray images using the multi-label classification and a text-to-text large language model. Our method could address the lack of explainability in the current workflow and provide a clear and flexible automated pipeline to reduce the workload of radiologists and support the further applications related to Human-AI interactive communications.

Cross-validation of an artificial intelligence tool for fracture classification and localization on conventional radiography in Dutch population.

Ruitenbeek HC, Sahil S, Kumar A, Kushawaha RK, Tanamala S, Sathyamurthy S, Agrawal R, Chattoraj S, Paramasamy J, Bos D, Fahimi R, Oei EHG, Visser JJ

pubmed logopapersJul 3 2025
The aim of this study is to validate the effectiveness of an AI tool trained on Indian data in a Dutch medical center and to assess its ability to classify and localize fractures. Conventional radiographs acquired between January 2019 and November 2022 were analyzed using a multitask deep neural network. The tool, trained on Indian data, identified and localized fractures in 17 body parts. The reference standard was based on radiology reports resulting from routine clinical workflow and confirmed by an experienced musculoskeletal radiologist. The analysis included both patient-wise and fracture-wise evaluations, employing binary and Intersection over Union (IoU) metrics to assess fracture detection and localization accuracy. In total, 14,311 radiographs (median age, 48 years (range 18-98), 7265 male) were analyzed and categorized by body parts; clavicle, shoulder, humerus, elbow, forearm, wrist, hand and finger, pelvis, hip, femur, knee, lower leg, ankle, foot and toe. 4156/14,311 (29%) had fractures. The AI tool demonstrated overall patient-wise sensitivity, specificity, and AUC of 87.1% (95% CI: 86.1-88.1%), 87.1% (95% CI: 86.4-87.7%), and 0.92 (95% CI: 0.91-0.93), respectively. Fracture detection rate was 60% overall, ranging from 7% for rib fractures to 90% for clavicle fractures. This study validates a fracture detection AI tool on a Western-European dataset, originally trained on Indian data. While classification performance is robust on real clinical data, fracture-wise analysis reveals variability in localization accuracy, underscoring the need for refinement in fracture localization. AI may provide help by enabling optimal use of limited resources or personnel. This study evaluates an AI tool designed to aid in detecting fractures, possibly reducing reading time or optimization of radiology workflow by prioritizing fracture-positive cases. Cross-validation on a consecutive Dutch cohort confirms this AI tool's clinical robustness. The tool detected fractures with 87% sensitivity, 87% specificity, and 0.92 AUC. AI localizes 60% of fractures, the highest for clavicle (90%) and lowest for ribs (7%).

Content-based X-ray image retrieval using fusion of local neighboring patterns and deep features for lung disease detection.

Prakash A, Singh VP

pubmed logopapersJul 3 2025
This paper introduces a Content-Based Medical Image Retrieval (CBMIR) system for detecting and retrieving lung disease cases to assist doctors and radiologists in clinical decision-making. The system combines texture-based features using Local Binary Patterns (LBP) with deep learning-based features extracted from pretrained CNN models, including VGG-16, DenseNet121, and InceptionV3. The objective is to identify the optimal fusion of texture and deep features to enhance the image retrieval performance. Various similarity measures, including Euclidean, Manhattan, and cosine similarities, were evaluated, with Cosine Similarity demonstrating the best performance, achieving an average precision of 65.5%. For COVID-19 cases, VGG-16 achieved a precision of 52.5%, while LBP performed best for the normal class with 85% precision. The fusion of LBP, VGG-16, and DenseNet121 excelled in pneumonia cases, with a precision of 93.5%. Overall, VGG-16 delivered the highest average precision of 74.0% across all classes, followed by LBP at 72.0%. The fusion of texture (LBP) and deep features from all CNN models achieved 86% accuracy for the retrieval of the top 10 images, supporting healthcare professionals in making more informed clinical decisions.

PiCME: Pipeline for Contrastive Modality Evaluation and Encoding in the MIMIC Dataset

Michal Golovanevsky, Pranav Mahableshwarkar, Carsten Eickhoff, Ritambhara Singh

arxiv logopreprintJul 3 2025
Multimodal deep learning holds promise for improving clinical prediction by integrating diverse patient data, including text, imaging, time-series, and structured demographics. Contrastive learning facilitates this integration by producing a unified representation that can be reused across tasks, reducing the need for separate models or encoders. Although contrastive learning has seen success in vision-language domains, its use in clinical settings remains largely limited to image and text pairs. We propose the Pipeline for Contrastive Modality Evaluation and Encoding (PiCME), which systematically assesses five clinical data types from MIMIC: discharge summaries, radiology reports, chest X-rays, demographics, and time-series. We pre-train contrastive models on all 26 combinations of two to five modalities and evaluate their utility on in-hospital mortality and phenotype prediction. To address performance plateaus with more modalities, we introduce a Modality-Gated LSTM that weights each modality according to its contrastively learned importance. Our results show that contrastive models remain competitive with supervised baselines, particularly in three-modality settings. Performance declines beyond three modalities, which supervised models fail to recover. The Modality-Gated LSTM mitigates this drop, improving AUROC from 73.19% to 76.93% and AUPRC from 51.27% to 62.26% in the five-modality setting. We also compare contrastively learned modality importance scores with attribution scores and evaluate generalization across demographic subgroups, highlighting strengths in interpretability and fairness. PiCME is the first to scale contrastive learning across all modality combinations in MIMIC, offering guidance for modality selection, training strategies, and equitable clinical prediction.

Intelligent diagnosis model for chest X-ray images diseases based on convolutional neural network.

Yang S, Wu Y

pubmed logopapersJul 2 2025
To address misdiagnosis caused by feature coupling in multi-label medical image classification, this study introduces a chest X-ray pathology reasoning method. It combines hierarchical attention convolutional networks with a multi-label decoupling loss function. This method aims to enhance the precise identification of complex lesions. It dynamically captures multi-scale lesion morphological features and integrates lung field partitioning with lesion localization through a dual-path attention mechanism, thereby improving clinical disease prediction accuracy. An adaptive dilated convolution module with 3 × 3 deformable kernels dynamically captures multi-scale lesion features. A channel-space dual-path attention mechanism enables precise feature selection for lung field partitioning and lesion localization. Cross-scale skip connections fuse shallow texture and deep semantic information, enhancing microlesion detection. A KL divergence-constrained contrastive loss function decouples 14 pathological feature representations via orthogonal regularization, effectively resolving multi-label coupling. Experiments on ChestX-ray14 show a weighted F1-score of 0.97, Hamming Loss of 0.086, and AUC values exceeding 0.94 for all pathologies. This study provides a reliable tool for multi-disease collaborative diagnosis.

Classification based deep learning models for lung cancer and disease using medical images

Ahmad Chaddad, Jihao Peng, Yihang Wu

arxiv logopreprintJul 2 2025
The use of deep learning (DL) in medical image analysis has significantly improved the ability to predict lung cancer. In this study, we introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework. This model is specifically designed to improve the prediction of lung cancer and diseases using the images. To address the challenge of missing feature information that occurs during the downsampling process in CNNs, we integrate the ResNet-D module, a variant designed to enhance feature extraction capabilities by modifying the downsampling layers, into the traditional ResNet model. Furthermore, a convolutional attention module was incorporated into the bottleneck layers to enhance model generalization by allowing the network to focus on relevant regions of the input images. We evaluated the proposed model using five public datasets, comprising lung cancer (LC2500 $n$=3183, IQ-OTH/NCCD $n$=1336, and LCC $n$=25000 images) and lung disease (ChestXray $n$=5856, and COVIDx-CT $n$=425024 images). To address class imbalance, we used data augmentation techniques to artificially increase the representation of underrepresented classes in the training dataset. The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14\% on the LC25000 dataset and 99.25/99.13\% on the IQ-OTH/NCCD dataset. Furthermore, the ResNet+ model saved computational cost compared to the original ResNet series in predicting lung cancer images. The proposed model outperformed the baseline models on publicly available datasets, achieving better performance metrics. Our codes are publicly available at https://github.com/AIPMLab/Graduation-2024/tree/main/Peng.

Multimodal Generative Artificial Intelligence Model for Creating Radiology Reports for Chest Radiographs in Patients Undergoing Tuberculosis Screening.

Hong EK, Kim HW, Song OK, Lee KC, Kim DK, Cho JB, Kim J, Lee S, Bae W, Roh B

pubmed logopapersJul 2 2025
<b>Background:</b> Chest radiographs play a crucial role in tuberculosis screening in high-prevalence regions, although widespread radiographic screening requires expertise that may be unavailable in settings with limited medical resources. <b>Objectives:</b> To evaluate a multimodal generative artificial intelligence (AI) model for detecting tuberculosis-associated abnormalities on chest radiography in patients undergoing tuberculosis screening. <b>Methods:</b> This retrospective study evaluated 800 chest radiographs obtained from two public datasets originating from tuberculosis screening programs. A generative AI model was used to create free-text reports for the radiographs. AI-generated reports were classified in terms of presence versus absence and laterality of tuberculosis-related abnormalities. Two radiologists independently reviewed the radiographs for tuberculosis presence and laterality in separate sessions, without and with use of AI-generated reports and recorded if they would accept the report without modification. Two additional radiologists reviewed radiographs and clinical readings from the datasets to determine the reference standard. <b>Results:</b> By the reference standard, 422/800 radiographs were positive for tuberculosis-related abnormalities. For detection of tuberculosis-related abnormalities, sensitivity, specificity, and accuracy were 95.2%, 86.7%, and 90.8% for AI-generated reports; 93.1%, 93.6%, and 93.4% for reader 1 without AI-generated reports; 93.1%, 95.0%, and 94.1% for reader 1 with AI-generated reports; 95.8%, 87.2%, and 91.3% for reader 2 without AI-generated reports; and 95.8%, 91.5%, and 93.5% for reader 2 with AI-generated reports. Accuracy was significantly lower for AI-generated reports than for both readers alone (p<.001), but significantly higher with than without AI-generated reports for one reader (reader 1: p=.47; reader 2: p=.47). Localization performance was significantly lower (p<.001) for AI-generated reports (63.3%) than for reader 1 (79.9%) and reader 2 (77.9%) without AI-generated reports and did not significantly change for either reader with AI-generated reports (reader 1: 78.7%, p=.71; reader 2: 81.5%, p=.23). Among normal and abnormal radiographs, reader 1 accepted 91.7% and 52.4%, while reader 2 accepted 83.2% and 37.0%, respectively, of AI-generated reports. <b>Conclusion:</b> While AI-generated reports may augment radiologists' diagnostic assessments, the current model requires human oversight given inferior standalone performance. <b>Clinical Impact:</b> The generative AI model could have potential application to aid tuberculosis screening programs in medically underserved regions, although technical improvements remain required.

CareAssist GPT improves patient user experience with a patient centered approach to computer aided diagnosis.

Algarni A

pubmed logopapersJul 2 2025
The rapid integration of artificial intelligence (AI) into healthcare has enhanced diagnostic accuracy; however, patient engagement and satisfaction remain significant challenges that hinder the widespread acceptance and effectiveness of AI-driven clinical tools. This study introduces CareAssist-GPT, a novel AI-assisted diagnostic model designed to improve both diagnostic accuracy and the patient experience through real-time, understandable, and empathetic communication. CareAssist-GPT combines high-resolution X-ray images, real-time physiological vital signs, and clinical notes within a unified predictive framework using deep learning. Feature extraction is performed using convolutional neural networks (CNNs), gated recurrent units (GRUs), and transformer-based NLP modules. Model performance was evaluated in terms of accuracy, precision, recall, specificity, and response time, alongside patient satisfaction through a structured user feedback survey. CareAssist-GPT achieved a diagnostic accuracy of 95.8%, improving by 2.4% over conventional models. It reported high precision (94.3%), recall (93.8%), and specificity (92.7%), with an AUC-ROC of 0.97. The system responded within 500 ms-23.1% faster than existing tools-and achieved a patient satisfaction score of 9.3 out of 10, demonstrating its real-time usability and communicative effectiveness. CareAssist-GPT significantly enhances the diagnostic process by improving accuracy and fostering patient trust through transparent, real-time explanations. These findings position it as a promising patient-centered AI solution capable of transforming healthcare delivery by bridging the gap between advanced diagnostics and human-centered communication.

A hybrid XAI-driven deep learning framework for robust GI tract disease diagnosis.

Dahan F, Shah JH, Saleem R, Hasnain M, Afzal M, Alfakih TM

pubmed logopapersJul 1 2025
The stomach is one of the main digestive organs in the GIT, essential for digestion and nutrient absorption. However, various gastrointestinal diseases, including gastritis, ulcers, and cancer, affect health and quality of life severely. The precise diagnosis of gastrointestinal (GI) tract diseases is a significant challenge in the field of healthcare, as misclassification leads to late prescriptions and negative consequences for patients. Even with the advancement in machine learning and explainable AI for medical image analysis, existing methods tend to have high false negative rates which compromise critical disease cases. This paper presents a hybrid deep learning based explainable artificial intelligence (XAI) approach to improve the accuracy of gastrointestinal disorder diagnosis, including stomach diseases, from images acquired endoscopically. Swin Transformer with DCNN (EfficientNet-B3, ResNet-50) is integrated to improve both the accuracy of diagnostics and the interpretability of the model to extract robust features. Stacked machine learning classifiers with meta-loss and XAI techniques (Grad-CAM) are combined to minimize false negatives, which helps in early and accurate medical diagnoses in GI tract disease evaluation. The proposed model successfully achieved an accuracy of 93.79% with a lower misclassification rate, which is effective for gastrointestinal tract disease classification. Class-wise performance metrics, such as precision, recall, and F1-score, show considerable improvements with false-negative rates being reduced. AI-driven GI tract disease diagnosis becomes more accessible for medical professionals through Grad-CAM because it provides visual explanations about model predictions. This study makes the prospect of using a synergistic DL with XAI open for improvement towards early diagnosis with fewer human errors and also guiding doctors handling gastrointestinal diseases.
Page 15 of 35341 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.