Sort by:
Page 15 of 15142 results

Comparative analysis of diagnostic performance in mammography: A reader study on the impact of AI assistance.

Ramli Hamid MT, Ab Mumin N, Abdul Hamid S, Mohd Ariffin N, Mat Nor K, Saib E, Mohamed NA

pubmed logopapersJan 1 2025
This study evaluates the impact of artificial intelligence (AI) assistance on the diagnostic performance of radiologists with varying levels of experience in interpreting mammograms in a Malaysian tertiary referral center, particularly in women with dense breasts. A retrospective study including 434 digital mammograms interpreted by two general radiologists (12 and 6 years of experience) and two trainees (2 years of experience). Diagnostic performance was assessed with and without AI assistance (Lunit INSIGHT MMG), using sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Inter-reader agreement was measured using kappa statistics. AI assistance significantly improved the diagnostic performance of all reader groups across all metrics (p < 0.05). The senior radiologist consistently achieved the highest sensitivity (86.5% without AI, 88.0% with AI) and specificity (60.5% without AI, 59.2% with AI). The junior radiologist demonstrated the highest PPV (56.9% without AI, 74.6% with AI) and NPV (90.3% without AI, 92.2% with AI). The trainees showed the lowest performance, but AI significantly enhanced their accuracy. AI assistance was particularly beneficial in interpreting mammograms of women with dense breasts. AI assistance significantly enhances the diagnostic accuracy and consistency of radiologists in mammogram interpretation, with notable benefits for less experienced readers. These findings support the integration of AI into clinical practice, particularly in resource-limited settings where access to specialized breast radiologists is constrained.

Integrating AI into Clinical Workflows: A Simulation Study on Implementing AI-aided Same-day Diagnostic Testing Following an Abnormal Screening Mammogram.

Lin Y, Hoyt AC, Manuel VG, Inkelas M, Maehara CK, Ayvaci MUS, Ahsen ME, Hsu W

pubmed logopapersJan 1 2024
Artificial intelligence (AI) shows promise in clinical tasks, yet its integration into workflows remains underexplored. This study proposes an AI-aided same-day diagnostic imaging workup to reduce recall rates following abnormal screening mammograms and alleviate patient anxiety while waiting for the diagnostic examinations. Using discrete simulation, we found minimal disruption to the workflow (a 4% reduction in daily patient volume or a 2% increase in operating time) under specific conditions: operation from 9 am to 12 pm with all radiologists managing all patient types (screenings, diagnostics, and biopsies). Costs specific to the AI-aided same-day diagnostic workup include AI software expenses and potential losses from unused pre-reserved slots for same-day diagnostic workups. These simulation findings can inform the implementation of an AI-aided same-day diagnostic workup, with future research focusing on its potential benefits, including improved patient satisfaction, reduced anxiety, lower recall rates, and shorter time to cancer diagnoses and treatment.
Page 15 of 15142 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.