Sort by:
Page 147 of 3563559 results

Pre- and Post-Treatment Glioma Segmentation with the Medical Imaging Segmentation Toolkit

Adrian Celaya, Tucker Netherton, Dawid Schellingerhout, Caroline Chung, Beatrice Riviere, David Fuentes

arxiv logopreprintJul 25 2025
Medical image segmentation continues to advance rapidly, yet rigorous comparison between methods remains challenging due to a lack of standardized and customizable tooling. In this work, we present the current state of the Medical Imaging Segmentation Toolkit (MIST), with a particular focus on its flexible and modular postprocessing framework designed for the BraTS 2025 pre- and post-treatment glioma segmentation challenge. Since its debut in the 2024 BraTS adult glioma post-treatment segmentation challenge, MIST's postprocessing module has been significantly extended to support a wide range of transforms, including removal or replacement of small objects, extraction of the largest connected components, and morphological operations such as hole filling and closing. These transforms can be composed into user-defined strategies, enabling fine-grained control over the final segmentation output. We evaluate three such strategies - ranging from simple small-object removal to more complex, class-specific pipelines - and rank their performance using the BraTS ranking protocol. Our results highlight how MIST facilitates rapid experimentation and targeted refinement, ultimately producing high-quality segmentations for the BraTS 2025 challenge. MIST remains open source and extensible, supporting reproducible and scalable research in medical image segmentation.

DeepJIVE: Learning Joint and Individual Variation Explained from Multimodal Data Using Deep Learning

Matthew Drexler, Benjamin Risk, James J Lah, Suprateek Kundu, Deqiang Qiu

arxiv logopreprintJul 25 2025
Conventional multimodal data integration methods provide a comprehensive assessment of the shared or unique structure within each individual data type but suffer from several limitations such as the inability to handle high-dimensional data and identify nonlinear structures. In this paper, we introduce DeepJIVE, a deep-learning approach to performing Joint and Individual Variance Explained (JIVE). We perform mathematical derivation and experimental validations using both synthetic and real-world 1D, 2D, and 3D datasets. Different strategies of achieving the identity and orthogonality constraints for DeepJIVE were explored, resulting in three viable loss functions. We found that DeepJIVE can successfully uncover joint and individual variations of multimodal datasets. Our application of DeepJIVE to the Alzheimer's Disease Neuroimaging Initiative (ADNI) also identified biologically plausible covariation patterns between the amyloid positron emission tomography (PET) and magnetic resonance (MR) images. In conclusion, the proposed DeepJIVE can be a useful tool for multimodal data analysis.

Is Exchangeability better than I.I.D to handle Data Distribution Shifts while Pooling Data for Data-scarce Medical image segmentation?

Ayush Roy, Samin Enam, Jun Xia, Vishnu Suresh Lokhande, Won Hwa Kim

arxiv logopreprintJul 25 2025
Data scarcity is a major challenge in medical imaging, particularly for deep learning models. While data pooling (combining datasets from multiple sources) and data addition (adding more data from a new dataset) have been shown to enhance model performance, they are not without complications. Specifically, increasing the size of the training dataset through pooling or addition can induce distributional shifts, negatively affecting downstream model performance, a phenomenon known as the "Data Addition Dilemma". While the traditional i.i.d. assumption may not hold in multi-source contexts, assuming exchangeability across datasets provides a more practical framework for data pooling. In this work, we investigate medical image segmentation under these conditions, drawing insights from causal frameworks to propose a method for controlling foreground-background feature discrepancies across all layers of deep networks. This approach improves feature representations, which are crucial in data-addition scenarios. Our method achieves state-of-the-art segmentation performance on histopathology and ultrasound images across five datasets, including a novel ultrasound dataset that we have curated and contributed. Qualitative results demonstrate more refined and accurate segmentation maps compared to prominent baselines across three model architectures. The code will be available on Github.

T-MPEDNet: Unveiling the Synergy of Transformer-aware Multiscale Progressive Encoder-Decoder Network with Feature Recalibration for Tumor and Liver Segmentation

Chandravardhan Singh Raghaw, Jasmer Singh Sanjotra, Mohammad Zia Ur Rehman, Shubhi Bansal, Shahid Shafi Dar, Nagendra Kumar

arxiv logopreprintJul 25 2025
Precise and automated segmentation of the liver and its tumor within CT scans plays a pivotal role in swift diagnosis and the development of optimal treatment plans for individuals with liver diseases and malignancies. However, automated liver and tumor segmentation faces significant hurdles arising from the inherent heterogeneity of tumors and the diverse visual characteristics of livers across a broad spectrum of patients. Aiming to address these challenges, we present a novel Transformer-aware Multiscale Progressive Encoder-Decoder Network (T-MPEDNet) for automated segmentation of tumor and liver. T-MPEDNet leverages a deep adaptive features backbone through a progressive encoder-decoder structure, enhanced by skip connections for recalibrating channel-wise features while preserving spatial integrity. A Transformer-inspired dynamic attention mechanism captures long-range contextual relationships within the spatial domain, further enhanced by multi-scale feature utilization for refined local details, leading to accurate prediction. Morphological boundary refinement is then employed to address indistinct boundaries with neighboring organs, capturing finer details and yielding precise boundary labels. The efficacy of T-MPEDNet is comprehensively assessed on two widely utilized public benchmark datasets, LiTS and 3DIRCADb. Extensive quantitative and qualitative analyses demonstrate the superiority of T-MPEDNet compared to twelve state-of-the-art methods. On LiTS, T-MPEDNet achieves outstanding Dice Similarity Coefficients (DSC) of 97.6% and 89.1% for liver and tumor segmentation, respectively. Similar performance is observed on 3DIRCADb, with DSCs of 98.3% and 83.3% for liver and tumor segmentation, respectively. Our findings prove that T-MPEDNet is an efficacious and reliable framework for automated segmentation of the liver and its tumor in CT scans.

A multi-dynamic low-rank deep image prior (ML-DIP) for real-time 3D cardiovascular MRI

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.

Semantics versus Identity: A Divide-and-Conquer Approach towards Adjustable Medical Image De-Identification

Yuan Tian, Shuo Wang, Rongzhao Zhang, Zijian Chen, Yankai Jiang, Chunyi Li, Xiangyang Zhu, Fang Yan, Qiang Hu, XiaoSong Wang, Guangtao Zhai

arxiv logopreprintJul 25 2025
Medical imaging has significantly advanced computer-aided diagnosis, yet its re-identification (ReID) risks raise critical privacy concerns, calling for de-identification (DeID) techniques. Unfortunately, existing DeID methods neither particularly preserve medical semantics, nor are flexibly adjustable towards different privacy levels. To address these issues, we propose a divide-and-conquer framework comprising two steps: (1) Identity-Blocking, which blocks varying proportions of identity-related regions, to achieve different privacy levels; and (2) Medical-Semantics-Compensation, which leverages pre-trained Medical Foundation Models (MFMs) to extract medical semantic features to compensate the blocked regions. Moreover, recognizing that features from MFMs may still contain residual identity information, we introduce a Minimum Description Length principle-based feature decoupling strategy, to effectively decouple and discard such identity components. Extensive evaluations against existing approaches across seven datasets and three downstream tasks, demonstrates our state-of-the-art performance.

Dealing with Segmentation Errors in Needle Reconstruction for MRI-Guided Brachytherapy

Vangelis Kostoulas, Arthur Guijt, Ellen M. Kerkhof, Bradley R. Pieters, Peter A. N. Bosman, Tanja Alderliesten

arxiv logopreprintJul 25 2025
Brachytherapy involves bringing a radioactive source near tumor tissue using implanted needles. Image-guided brachytherapy planning requires amongst others, the reconstruction of the needles. Manually annotating these needles on patient images can be a challenging and time-consuming task for medical professionals. For automatic needle reconstruction, a two-stage pipeline is commonly adopted, comprising a segmentation stage followed by a post-processing stage. While deep learning models are effective for segmentation, their results often contain errors. No currently existing post-processing technique is robust to all possible segmentation errors. We therefore propose adaptations to existing post-processing techniques mainly aimed at dealing with segmentation errors and thereby improving the reconstruction accuracy. Experiments on a prostate cancer dataset, based on MRI scans annotated by medical professionals, demonstrate that our proposed adaptations can help to effectively manage segmentation errors, with the best adapted post-processing technique achieving median needle-tip and needle-bottom point localization errors of $1.07$ (IQR $\pm 1.04$) mm and $0.43$ (IQR $\pm 0.46$) mm, respectively, and median shaft error of $0.75$ (IQR $\pm 0.69$) mm with 0 false positive and 0 false negative needles on a test set of 261 needles.

Quantifying physiological variability and improving reproducibility in 4D-flow MRI cerebrovascular measurements with self-supervised deep learning.

Jolicoeur BW, Yardim ZS, Roberts GS, Rivera-Rivera LA, Eisenmenger LB, Johnson KM

pubmed logopapersJul 25 2025
To assess the efficacy of self-supervised deep learning (DL) denoising in reducing measurement variability in 4D-Flow MRI, and to clarify the contributions of physiological variation to cerebrovascular hemodynamics. A self-supervised DL denoising framework was trained on 3D radially sampled 4D-Flow MRI data. The model was evaluated in a prospective test-retest imaging study in which 10 participants underwent multiple 4D-Flow MRI scans. This included back-to-back scans and a single scan interleaved acquisition designed to isolate noise from physiological variations. The effectiveness of DL denoising was assessed by comparing pixelwise velocity and hemodynamic metrics before and after denoising. DL denoising significantly enhanced the reproducibility of 4D-Flow MRI measurements, reducing the 95% confidence interval of cardiac-resolved velocity from 215 to 142 mm/s in back-to-back scans and from 158 to 96 mm/s in interleaved scans, after adjusting for physiological variation. In derived parameters, DL denoising did not significantly improve integrated measures, such as flow rates, but did significantly improve noise sensitive measures, such as pulsatility index. Physiologic variation in back-to-back time-resolved scans contributed 26.37% ± 0.08% and 32.42% ± 0.05% of standard error before and after DL. Self-supervised DL denoising enhances the quantitative repeatability of 4D-Flow MRI by reducing technical noise; however, variations from physiology and post-processing are not removed. These findings underscore the importance of accounting for both technical and physiological variability in neurovascular flow imaging, particularly for studies aiming to establish biomarkers for neurodegenerative diseases with vascular contributions.

PerioDet: Large-Scale Panoramic Radiograph Benchmark for Clinical-Oriented Apical Periodontitis Detection

Xiaocheng Fang, Jieyi Cai, Huanyu Liu, Chengju Zhou, Minhua Lu, Bingzhi Chen

arxiv logopreprintJul 25 2025
Apical periodontitis is a prevalent oral pathology that presents significant public health challenges. Despite advances in automated diagnostic systems across various medical fields, the development of Computer-Aided Diagnosis (CAD) applications for apical periodontitis is still constrained by the lack of a large-scale, high-quality annotated dataset. To address this issue, we release a large-scale panoramic radiograph benchmark called "PerioXrays", comprising 3,673 images and 5,662 meticulously annotated instances of apical periodontitis. To the best of our knowledge, this is the first benchmark dataset for automated apical periodontitis diagnosis. This paper further proposes a clinical-oriented apical periodontitis detection (PerioDet) paradigm, which jointly incorporates Background-Denoising Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address the challenges posed by background noise and small targets in automated detection. Extensive experiments on the PerioXrays dataset demonstrate the superiority of PerioDet in advancing automated apical periodontitis detection. Additionally, a well-designed human-computer collaborative experiment underscores the clinical applicability of our method as an auxiliary diagnostic tool for professional dentists.

MedIQA: A Scalable Foundation Model for Prompt-Driven Medical Image Quality Assessment

Siyi Xun, Yue Sun, Jingkun Chen, Zitong Yu, Tong Tong, Xiaohong Liu, Mingxiang Wu, Tao Tan

arxiv logopreprintJul 25 2025
Rapid advances in medical imaging technology underscore the critical need for precise and automated image quality assessment (IQA) to ensure diagnostic accuracy. Existing medical IQA methods, however, struggle to generalize across diverse modalities and clinical scenarios. In response, we introduce MedIQA, the first comprehensive foundation model for medical IQA, designed to handle variability in image dimensions, modalities, anatomical regions, and types. We developed a large-scale multi-modality dataset with plentiful manually annotated quality scores to support this. Our model integrates a salient slice assessment module to focus on diagnostically relevant regions feature retrieval and employs an automatic prompt strategy that aligns upstream physical parameter pre-training with downstream expert annotation fine-tuning. Extensive experiments demonstrate that MedIQA significantly outperforms baselines in multiple downstream tasks, establishing a scalable framework for medical IQA and advancing diagnostic workflows and clinical decision-making.
Page 147 of 3563559 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.