Sort by:
Page 142 of 3563559 results

Deep learning aging marker from retinal images unveils sex-specific clinical and genetic signatures

Trofimova, O., Böttger, L., Bors, S., Pan, Y., Liefers, B., Beyeler, M. J., Presby, D. M., Bontempi, D., Hastings, J., Klaver, C. C. W., Bergmann, S.

medrxiv logopreprintJul 29 2025
Retinal fundus images offer a non-invasive window into systemic aging. Here, we fine-tuned a foundation model (RETFound) to predict chronological age from color fundus images in 71,343 participants from the UK Biobank, achieving a mean absolute error of 2.85 years. The resulting retinal age gap (RAG), i.e., the difference between predicted and chronological age, was associated with cardiometabolic traits, inflammation, cognitive performance, mortality, dementia, cancer, and incident cardiovascular disease. Genome-wide analyses identified genes related to longevity, metabolism, neurodegeneration, and age-related eye diseases. Sex-stratified models revealed consistent performance but divergent biological signatures: males had younger-appearing retinas and stronger links to metabolic syndrome, while in females, both model attention and genetic associations pointed to a greater involvement of retinal vasculature. Our study positions retinal aging as a biologically meaningful and sex-sensitive biomarker that can support more personalized approaches to risk assessment and aging-related healthcare.

Enhancing Synthetic Pelvic CT Generation from CBCT using Vision Transformer with Adaptive Fourier Neural Operators.

Bhaskara R, Oderinde OM

pubmed logopapersJul 28 2025
This study introduces a novel approach to improve Cone Beam CT (CBCT) image quality by developing a synthetic CT (sCT) generation method using CycleGAN with a Vision Transformer (ViT) and an Adaptive Fourier Neural Operator (AFNO). 

Approach: A dataset of 20 prostate cancer patients who received stereotactic body radiation therapy (SBRT) was used, consisting of paired CBCT and planning CT (pCT) images. The dataset was preprocessed by registering pCTs to CBCTs using deformation registration techniques, such as B-spline, followed by resampling to uniform voxel sizes and normalization. The model architecture integrates a CycleGAN with bidirectional generators, where the UNet generator is enhanced with a ViT at the bottleneck. AFNO functions as the attention mechanism for the ViT, operating on the input data in the Fourier domain. AFNO's innovations handle varying resolutions, mesh invariance, and efficient long-range dependency capture.

Main Results: Our model improved significantly in preserving anatomical details and capturing complex image dependencies. The AFNO mechanism processed global image information effectively, adapting to interpatient variations for accurate sCT generation. Evaluation metrics like Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Cross Correlation (NCC), demonstrated the superiority of our method. Specifically, the model achieved an MAE of 9.71, PSNR of 37.08 dB, SSIM of 0.97, and NCC of 0.99, confirming its efficacy. 

Significance: The integration of AFNO within the CycleGAN UNet framework addresses Cone Beam CT image quality limitations. The model generates synthetic CTs that allow adaptive treatment planning during SBRT, enabling adjustments to the dose based on tumor response, thus reducing radiotoxicity from increased doses. This method's ability to preserve both global and local anatomical features shows potential for improving tumor targeting, adaptive radiotherapy planning, and clinical decision-making.

ToothMaker: Realistic Panoramic Dental Radiograph Generation via Disentangled Control.

Yu W, Guo X, Li W, Liu X, Chen H, Yuan Y

pubmed logopapersJul 28 2025
Generating high-fidelity dental radiographs is essential for training diagnostic models. Despite the development of numerous methods for other medical data, generative approaches in dental radiology remain unexplored. Due to the intricate tooth structures and specialized terminology, these methods often yield ambiguous tooth regions and incorrect dental concepts when applied to dentistry. In this paper, we take the first attempt to investigate diffusion-based teeth X-ray image generation and propose ToothMaker, a novel framework specifically designed for the dental domain. Firstly, to synthesize X-ray images that possess accurate tooth structures and realistic radiological styles simultaneously, we design control-disentangled fine-tuning (CDFT) strategy. Specifically, we present two separate controllers to handle style and layout control respectively, and introduce a gradient-based decoupling method that optimizes each using their corresponding disentangled gradients. Secondly, to enhance model's understanding of dental terminology, we propose prior-disentangled guidance module (PDGM), enabling precise synthesis of dental concepts. It utilizes large language model to decompose dental terminology into a series of meta-knowledge elements and performs interactions and refinements through hypergraph neural network. These elements are then fed into the network to guide the generation of dental concepts. Extensive experiments demonstrate the high fidelity and diversity of the images synthesized by our approach. By incorporating the generated data, we achieve substantial performance improvements on downstream segmentation and visual question answering tasks, indicating that our method can greatly reduce the reliance on manually annotated data. Code will be public available at https://github.com/CUHK-AIM-Group/ToothMaker.

From promise to practice: a scoping review of AI applications in abdominal radiology.

Fotis A, Lalwani N, Gupta P, Yee J

pubmed logopapersJul 28 2025
AI is rapidly transforming abdominal radiology. This scoping review mapped current applications across segmentation, detection, classification, prediction, and workflow optimization based on 432 studies published between 2019 and 2024. Most studies focused on CT imaging, with fewer involving MRI, ultrasound, or X-ray. Segmentation models (e.g., U-Net) performed well in liver and pancreatic imaging (Dice coefficient 0.65-0.90). Classification models (e.g., ResNet, DenseNet) were commonly used for diagnostic labeling, with reported sensitivities ranging from 52 to 100% and specificities from 40.7 to 99%. A small number of studies employed true object detection models (e.g., YOLOv3, YOLOv7, Mask R-CNN) capable of spatial lesion localization, marking an emerging trend toward localization-based AI. Predictive models demonstrated AUCs between 0.62 and 0.99 but often lacked interpretability and external validation. Workflow optimization studies reported improved efficiency (e.g., reduced report turnaround and scan repetition), though standardized benchmarks were often missing. Major gaps identified include limited real-world validation, underuse of non-CT modalities, and unclear regulatory pathways. Successful clinical integration will require robust validation, practical implementation, and interdisciplinary collaboration.

Fully automated 3D multi-modal deep learning model for preoperative T-stage prediction of colorectal cancer using <sup>18</sup>F-FDG PET/CT.

Zhang M, Li Y, Zheng C, Xie F, Zhao Z, Dai F, Wang J, Wu H, Zhu Z, Liu Q, Li Y

pubmed logopapersJul 28 2025
This study aimed to develop a fully automated 3D multi-modal deep learning model using preoperative <sup>18</sup>F-FDG PET/CT to predict the T-stage of colorectal cancer (CRC) and evaluate its clinical utility. A retrospective cohort of 474 CRC patients was included, with 400 patients for internal cohort and 74 patients for external cohort. Patients were classified into early T-stage (T1-T2) and advanced T-stage (T3-T4) groups. Automatic segmentation of the volume of interest (VOI) was achieved based on TotalSegmentator. A 3D ResNet18-based deep learning model integrated with a cross-multi-head attention mechanism was developed. Five models (CT + PET + Clinic (CPC), CT + PET (CP), PET (P), CT (C), Clinic) and two radiologists' assessment were compared. Performance was evaluated using Area Under the Curve (AUC). Grad-CAM was employed to provide visual interpretability of decision-critical regions. The automated segmentation achieved Dice scores of 0.884 (CT) and 0.888 (PET). The CPC and CP models achieved superior performance, with AUCs of 0.869 and 0.869 in the internal validation cohort, respectively, outperforming single-modality models (P: 0.832; C: 0.809; Clinic: 0.728) and the radiologists (AUC: 0.627, P < 0.05 for all models vs. radiologists, except for the Clinical model). External validation exhibited a similar trend, with AUCs of 0.814, 0.812, 0.763, 0.714, 0.663 and 0.704, respectively. Grad-CAM visualization highlighted tumor-centric regions for early T-stage and peri-tumoral tissue infiltration for advanced T-stage. The fully automated multimodal, fusing PET/CT with cross-multi-head-attention, improved T-stage prediction in CRC, surpassing the single-modality models and radiologists, offering a time-efficient tool to aid clinical decision-making.

Dosimetric evaluation of synthetic kilo-voltage CT images generated from megavoltage CT for head and neck tomotherapy using a conditional GAN network.

Choghazardi Y, Tavakoli MB, Abedi I, Roayaei M, Hemati S, Shanei A

pubmed logopapersJul 28 2025
The lower image contrast of megavoltage computed tomography (MVCT), which corresponds to kilovoltage computed tomography (kVCT), can inhibit accurate dosimetric assessments. This study proposes a deep learning approach, specifically the pix2pix network, to generate high-quality synthetic kVCT (skVCT) images from MVCT data. The model was trained on a dataset of 25 paired patient images and evaluated on a test set of 15 paired images. We performed visual inspections to assess the quality of the generated skVCT images and calculated the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Dosimetric equivalence was evaluated by comparing the gamma pass rates of treatment plans derived from skVCT and kVCT images. Results showed that skVCT images exhibited significantly higher quality than MVCT images, with PSNR and SSIM values of 31.9 ± 1.1 dB and 94.8% ± 1.3%, respectively, compared to 26.8 ± 1.7 dB and 89.5% ± 1.5% for MVCT-to-kVCT comparisons. Furthermore, treatment plans based on skVCT images achieved excellent gamma pass rates of 99.78 ± 0.14% and 99.82 ± 0.20% for 2 mm/2% and 3 mm/3% criteria, respectively, comparable to those obtained from kVCT-based plans (99.70 ± 0.31% and 99.79 ± 1.32%). This study demonstrates the potential of pix2pix models for generating high-quality skVCT images, which could significantly enhance Adaptive Radiation Therapy (ART).

Predicting Intracranial Pressure Levels: A Deep Learning Approach Using Computed Tomography Brain Scans.

Theodoropoulos D, Trivizakis E, Marias K, Xirouchaki N, Vakis A, Papadaki E, Karantanas A, Karabetsos DA

pubmed logopapersJul 28 2025
Elevated intracranial pressure (ICP) is a serious condition that demands prompt diagnosis to avoid significant neurological injury or even death. Although invasive techniques remain the "gold standard" for ICP measuring, they are time-consuming and pose risks of complications. Various noninvasive methods have been suggested, but their experimental status limits their use in emergency situations. On the other hand, although artificial intelligence has rapidly evolved, it has not yet fully harnessed fast-acquisition modalities such as computed tomography (CT) scans to evaluate ICP. This is likely due to the lack of available annotated data sets. In this article, we present research that addresses this gap by training four distinct deep learning models on a custom data set, enhanced with demographical and Glasgow Coma Scale (GCS) values. A key innovation of our study is the incorporation of demographical data and GCS values as additional channels of the scans. The models were trained and validated on a custom data set consisting of paired CT brain scans (n = 578) with corresponding ICP values, supplemented by GCS scores and demographical data. The algorithm addresses a binary classification problem by predicting whether ICP levels exceed a predetermined threshold of 15 mm Hg. The top-performing models achieved an area under the curve of 88.3% and a recall of 81.8%. An algorithm that enhances the transparency of the model's decisions was used to provide insights into where the models focus when generating outcomes, both for the best and lowest-performing models. This study demonstrates the potential of AI-based models to evaluate ICP levels from brain CT scans with high recall. Although promising, further improvements are necessary in the future to validate these findings and improve clinical applicability.

Evaluating the impact of view position in X-ray imaging for the classification of lung diseases.

Hage Chehade A, Abdallah N, Marion JM, Oueidat M, Chauvet P

pubmed logopapersJul 28 2025
Clinical information associated with chest X-ray images, such as view position, patient age and gender, plays a crucial role in image interpretation, as it influences the visibility of anatomical structures and pathologies. However, most classification models using the ChestX-ray14 dataset relied solely on image data, disregarding the impact of these clinical variables. This study aims to investigate which clinical variable affects image characteristics and assess its impact on classification performance. To explore the relationships between clinical variables and image characteristics, unsupervised clustering was applied to group images based on their similarities. Afterwards, a statistical analysis was then conducted on each cluster to examine their clinical composition, by analyzing the distribution of age, gender, and view position. An attention-based CNN model was developed separately for each value of the clinical variable with the greatest influence on image characteristics to assess its impact on lung disease classification. The analysis identified view position as the most influential variable affecting image characteristics. Accounting for this, the proposed approach achieved a weighted area under the curve (AUC) of 0.8176 for pneumonia classification, surpassing the base model (without considering view position) by 1.65% and outperforming previous studies by 6.76%. Furthermore, it demonstrated improved performance across all 14 diseases in the ChestX-ray14 dataset. The findings highlight the importance of considering view position when developing classification models for chest X-ray analysis. Accounting for this characteristic allows for more precise disease identification, demonstrating potential for broader clinical application in lung disease evaluation.

Self-Assessment of acute rib fracture detection system from chest X-ray: Preliminary study for early radiological diagnosis.

Lee HK, Kim HS, Kim SG, Park JY

pubmed logopapersJul 28 2025
ObjectiveDetecting and accurately diagnosing rib fractures in chest radiographs is a challenging and time-consuming task for radiologists. This study presents a novel deep learning system designed to automate the detection and segmentation of rib fractures in chest radiographs.MethodsThe proposed method combines CenterNet with HRNet v2 for precise fracture region identification and HRNet-W48 with contextual representation to enhance rib segmentation. A dataset consisting of 1006 chest radiographs from a tertiary hospital in Korea was used, with a split of 7:2:1 for training, validation, and testing.ResultsThe rib fracture detection component achieved a sensitivity of 0.7171, indicating its effectiveness in identifying fractures. Additionally, the rib segmentation performance was measured by a dice score of 0.86, demonstrating its accuracy in delineating rib structures. Visual assessment results further highlight the model's capability to pinpoint fractures and segment ribs accurately.ConclusionThis innovative approach holds promise for improving rib fracture detection and rib segmentation, offering potential benefits in clinical practice for more efficient and accurate diagnosis in the field of medical image analysis.

Implicit Spatiotemporal Bandwidth Enhancement Filter by Sine-activated Deep Learning Model for Fast 3D Photoacoustic Tomography

I Gede Eka Sulistyawan, Takuro Ishii, Riku Suzuki, Yoshifumi Saijo

arxiv logopreprintJul 28 2025
3D photoacoustic tomography (3D-PAT) using high-frequency hemispherical transducers offers near-omnidirectional reception and enhanced sensitivity to the finer structural details encoded in the high-frequency components of the broadband photoacoustic (PA) signal. However, practical constraints such as limited number of channels with bandlimited sampling rate often result in sparse and bandlimited sensors that degrade image quality. To address this, we revisit the 2D deep learning (DL) approach applied directly to sensor-wise PA radio-frequency (PARF) data. Specifically, we introduce sine activation into the DL model to restore the broadband nature of PARF signals given the observed band-limited and high-frequency PARF data. Given the scarcity of 3D training data, we employ simplified training strategies by simulating random spherical absorbers. This combination of sine-activated model and randomized training is designed to emphasize bandwidth learning over dataset memorization. Our model was evaluated on a leaf skeleton phantom, a micro-CT-verified 3D spiral phantom and in-vivo human palm vasculature. The results showed that the proposed training mechanism on sine-activated model was well-generalized across the different tests by effectively increasing the sensor density and recovering the spatiotemporal bandwidth. Qualitatively, the sine-activated model uniquely enhanced high-frequency content that produces clearer vascular structure with fewer artefacts. Quantitatively, the sine-activated model exhibits full bandwidth at -12 dB spectrum and significantly higher contrast-to-noise ratio with minimal loss of structural similarity index. Lastly, we optimized our approach to enable fast enhanced 3D-PAT at 2 volumes-per-second for better practical imaging of a free-moving targets.
Page 142 of 3563559 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.