Sort by:
Page 141 of 3993984 results

MedSR-Impact: Transformer-Based Super-Resolution for Lung CT Segmentation, Radiomics, Classification, and Prognosis

Marc Boubnovski Martell, Kristofer Linton-Reid, Mitchell Chen, Sumeet Hindocha, Benjamin Hunter, Marco A. Calzado, Richard Lee, Joram M. Posma, Eric O. Aboagye

arxiv logopreprintJul 21 2025
High-resolution volumetric computed tomography (CT) is essential for accurate diagnosis and treatment planning in thoracic diseases; however, it is limited by radiation dose and hardware costs. We present the Transformer Volumetric Super-Resolution Network (\textbf{TVSRN-V2}), a transformer-based super-resolution (SR) framework designed for practical deployment in clinical lung CT analysis. Built from scalable components, including Through-Plane Attention Blocks (TAB) and Swin Transformer V2 -- our model effectively reconstructs fine anatomical details in low-dose CT volumes and integrates seamlessly with downstream analysis pipelines. We evaluate its effectiveness on three critical lung cancer tasks -- lobe segmentation, radiomics, and prognosis -- across multiple clinical cohorts. To enhance robustness across variable acquisition protocols, we introduce pseudo-low-resolution augmentation, simulating scanner diversity without requiring private data. TVSRN-V2 demonstrates a significant improvement in segmentation accuracy (+4\% Dice), higher radiomic feature reproducibility, and enhanced predictive performance (+0.06 C-index and AUC). These results indicate that SR-driven recovery of structural detail significantly enhances clinical decision support, positioning TVSRN-V2 as a well-engineered, clinically viable system for dose-efficient imaging and quantitative analysis in real-world CT workflows.

A Study of Anatomical Priors for Deep Learning-Based Segmentation of Pheochromocytoma in Abdominal CT

Tanjin Taher Toma, Tejas Sudharshan Mathai, Bikash Santra, Pritam Mukherjee, Jianfei Liu, Wesley Jong, Darwish Alabyad, Vivek Batheja, Abhishek Jha, Mayank Patel, Darko Pucar, Jayadira del Rivero, Karel Pacak, Ronald M. Summers

arxiv logopreprintJul 21 2025
Accurate segmentation of pheochromocytoma (PCC) in abdominal CT scans is essential for tumor burden estimation, prognosis, and treatment planning. It may also help infer genetic clusters, reducing reliance on expensive testing. This study systematically evaluates anatomical priors to identify configurations that improve deep learning-based PCC segmentation. We employed the nnU-Net framework to evaluate eleven annotation strategies for accurate 3D segmentation of pheochromocytoma, introducing a set of novel multi-class schemes based on organ-specific anatomical priors. These priors were derived from adjacent organs commonly surrounding adrenal tumors (e.g., liver, spleen, kidney, aorta, adrenal gland, and pancreas), and were compared against a broad body-region prior used in previous work. The framework was trained and tested on 105 contrast-enhanced CT scans from 91 patients at the NIH Clinical Center. Performance was measured using Dice Similarity Coefficient (DSC), Normalized Surface Distance (NSD), and instance-wise F1 score. Among all strategies, the Tumor + Kidney + Aorta (TKA) annotation achieved the highest segmentation accuracy, significantly outperforming the previously used Tumor + Body (TB) annotation across DSC (p = 0.0097), NSD (p = 0.0110), and F1 score (25.84% improvement at an IoU threshold of 0.5), measured on a 70-30 train-test split. The TKA model also showed superior tumor burden quantification (R^2 = 0.968) and strong segmentation across all genetic subtypes. In five-fold cross-validation, TKA consistently outperformed TB across IoU thresholds (0.1 to 0.5), reinforcing its robustness and generalizability. These findings highlight the value of incorporating relevant anatomical context in deep learning models to achieve precise PCC segmentation, supporting clinical assessment and longitudinal monitoring.

Latent Space Synergy: Text-Guided Data Augmentation for Direct Diffusion Biomedical Segmentation

Muhammad Aqeel, Maham Nazir, Zanxi Ruan, Francesco Setti

arxiv logopreprintJul 21 2025
Medical image segmentation suffers from data scarcity, particularly in polyp detection where annotation requires specialized expertise. We present SynDiff, a framework combining text-guided synthetic data generation with efficient diffusion-based segmentation. Our approach employs latent diffusion models to generate clinically realistic synthetic polyps through text-conditioned inpainting, augmenting limited training data with semantically diverse samples. Unlike traditional diffusion methods requiring iterative denoising, we introduce direct latent estimation enabling single-step inference with T x computational speedup. On CVC-ClinicDB, SynDiff achieves 96.0% Dice and 92.9% IoU while maintaining real-time capability suitable for clinical deployment. The framework demonstrates that controlled synthetic augmentation improves segmentation robustness without distribution shift. SynDiff bridges the gap between data-hungry deep learning models and clinical constraints, offering an efficient solution for deployment in resourcelimited medical settings.

Mammo-SAE: Interpreting Breast Cancer Concept Learning with Sparse Autoencoders

Krishna Kanth Nakka

arxiv logopreprintJul 21 2025
Interpretability is critical in high-stakes domains such as medical imaging, where understanding model decisions is essential for clinical adoption. In this work, we introduce Sparse Autoencoder (SAE)-based interpretability to breast imaging by analyzing {Mammo-CLIP}, a vision--language foundation model pretrained on large-scale mammogram image--report pairs. We train a patch-level \texttt{Mammo-SAE} on Mammo-CLIP to identify and probe latent features associated with clinically relevant breast concepts such as \textit{mass} and \textit{suspicious calcification}. Our findings reveal that top activated class level latent neurons in the SAE latent space often tend to align with ground truth regions, and also uncover several confounding factors influencing the model's decision-making process. Additionally, we analyze which latent neurons the model relies on during downstream finetuning for improving the breast concept prediction. This study highlights the promise of interpretable SAE latent representations in providing deeper insight into the internal workings of foundation models at every layer for breast imaging.

Trueness of artificial intelligence-based, manual, and global thresholding segmentation protocols for human mandibles.

Hernandez AKT, Dutra V, Chu TG, Yang CC, Lin WS

pubmed logopapersJul 21 2025
To compare the trueness of artificial intelligence (AI)-based, manual, and global segmentation protocols by superimposing the resulting segmented 3D models onto reference gold standard surface scan models. Twelve dry human mandibles were used. A cone beam computed tomography (CBCT) scanner was used to scan the mandibles, and the acquired digital imaging and communications in medicine (DICOM) files were segmented using three protocols: global thresholding, manual, and AI-based segmentation (Diagnocat; Diagnocat, San Francisco, CA). The segmented files were exported as study 3D models. A structured light surface scanner (GoSCAN Spark; Creaform 3D, Levis, Canada) was used to scan all mandibles, and the resulting reference 3D models were exported. The study 3D models were compared with the respective reference 3D models by using a mesh comparison software (Geomagic Design X; 3D Systems Inc, Rock Hill, SC). Root mean square (RMS) error values were recorded to measure the magnitude of deviation (trueness), and color maps were obtained to visualize the differences. Comparisons of the trueness of three segmentation methods for differences in RMS were made using repeated measures analysis of variance (ANOVA). A two-sided 5% significance level was used for all tests in the software program. AI-based segmentations had significantly higher RMS values than manual segmentations for the entire mandible (p < 0.001), alveolar process (p < 0.001), and body of the mandible (p < 0.001). AI-based segmentations had significantly lower RMS values than manual segmentations for the condyles (p = 0.018) and ramus (p = 0.013). No significant differences were found between the AI-based and manual segmentations for the coronoid process (p = 0.275), symphysis (p = 0.346), and angle of the mandible (p = 0.344). Global thresholding had significantly higher RMS values than manual segmentations for the alveolus (p < 0.001), angle of the mandible (p < 0.001), body of the mandible (p < 0.001), condyles (p < 0.001), coronoid (p = 0.002), entire mandible (p < 0.001), ramus (p < 0.001), and symphysis (p < 0.001). Global thresholding had significantly higher RMS values than AI-based segmentation for the alveolar process (p = 0.002), angle of the mandible (p < 0.001), body of the mandible (p < 0.001), condyles (p < 0.001), coronoid (p = 0.017), mandible (p < 0.001), ramus (p < 0.001), and symphysis (p < 0.001). AI-based segmentations produced lower RMS values, indicating truer 3D models, compared to global thresholding, and showed no significant differences in some areas compared to manual segmentation. Thus, AI-based segmentation offers a level of segmentation trueness acceptable for use as an alternative to manual or global thresholding segmentation protocols.

PXseg: automatic tooth segmentation, numbering and abnormal morphology detection based on CBCT and panoramic radiographs.

Wang R, Cheng F, Dai G, Zhang J, Fan C, Yu J, Li J, Jiang F

pubmed logopapersJul 21 2025
PXseg, a novel approach for tooth segmentation, numbering and abnormal morphology detection in panoramic X-ray (PX), was designed and promoted through optimizing annotation and applying pre-training. Derived from multicenter, ctPXs generated from cone beam computed tomography (CBCT) with accurate 3D labels were utilized for pre-training, while conventional PXs (cPXs) with 2D labels were input for training. Visual and statistical analyses were conducted using the internal dataset to assess segmentation and numbering performances of PXseg and compared with the model without ctPX pre-training, while the accuracy of PXseg detecting abnormal teeth was evaluated using the external dataset consisting of cPXs with complex dental diseases. Besides, a diagnostic testing was performed to contrast diagnostic efficiency with and without PXseg's assistance. The DSC and F1-score of PXseg in tooth segmentation reached 0.882 and 0.902, which increased by 4.6% and 4.0% compared to the model without pre-training. For tooth numbering, the F1-score of PXseg reached 0.943 and increased by 2.2%. Based on the promotion in segmentation, the accuracy of abnormal tooth morphology detection exceeded 0.957 and was 4.3% higher. A website was constructed to assist in PX interpretation, and the diagnostic efficiency was greatly enhanced with the assistance of PXseg. The application of accurate labels in ctPX increased the pre-training weight of PXseg and improved the training effect, achieving promotions in tooth segmentation, numbering and abnormal morphology detection. Rapid and accurate results provided by PXseg streamlined the workflow of PX diagnosis, possessing significant clinical application prospect.

Advances in IPMN imaging: deep learning-enhanced HASTE improves lesion assessment.

Kolck J, Pivetta F, Hosse C, Cao H, Fehrenbach U, Malinka T, Wagner M, Walter-Rittel T, Geisel D

pubmed logopapersJul 21 2025
The prevalence of asymptomatic pancreatic cysts is increasing due to advances in imaging techniques. Among these, intraductal papillary mucinous neoplasms (IPMNs) are most common, with potential for malignant transformation, often necessitating close follow-up. This study evaluates novel MRI techniques for the assessment of IPMN. From May to December 2023, 59 patients undergoing abdominal MRI were retrospectively enrolled. Examinations were conducted on 3-Tesla scanners using a Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) and standard HASTE (HASTE<sub>S</sub>) sequence. Two readers assessed minimum detectable lesion size and lesion-to-parenchyma contrast quantitatively, and qualitative assessments focused on image quality. Statistical analyses included the Wilcoxon signed-rank and chi-squared tests. HASTE<sub>DL</sub> demonstrated superior overall image quality (p < 0.001), with higher sharpness and contrast ratings (p < 0.001, p = 0.112). HASTE<sub>DL</sub> showed enhanced conspicuity of IPMN (p < 0.001) and lymph nodes (p < 0.001), with more frequent visualization of IPMN communication with the pancreatic duct (p < 0.001). Visualization of complex features (dilated pancreatic duct, septa, and mural nodules) was superior in HASTE<sub>DL</sub> (p < 0.001). The minimum detectable cyst size was significantly smaller for HASTE<sub>DL</sub> (4.17 mm ± 3.00 vs. 5.51 mm ± 4.75; p < 0.001). Inter-reader agreement was for (к 0.936) for HASTE<sub>DL</sub>, slightly lower (к 0.885) for HASTE<sub>S</sub>. HASTE<sub>DL</sub> in IPMN imaging provides superior image quality and significantly reduced scan times. Given the increasing prevalence of IPMN and the ensuing clinical need for fast and precise imaging, HASTE<sub>DL</sub> improves the availability and quality of patient care. Question Are there advantages of deep-learning-accelerated MRI in imaging and assessing intraductal papillary mucinous neoplasms (IPMN)? Findings Deep-Learning Accelerated Half-Fourier Single-Shot Turbo Spin-Echo (HASTE<sub>DL</sub>) demonstrated superior image quality, improved conspicuity of "worrisome features" and detection of smaller cysts, with significantly reduced scan times. Clinical relevance HASTEDL provides faster, high-quality MRI imaging, enabling improved diagnostic accuracy and timely risk stratification for IPMN, potentially enhancing patient care and addressing the growing clinical demand for efficient imaging of IPMN.

Deep learning using nasal endoscopy and T2-weighted MRI for prediction of sinonasal inverted papilloma-associated squamous cell carcinoma: an exploratory study.

Ren J, Ren Z, Zhang D, Yuan Y, Qi M

pubmed logopapersJul 21 2025
Detecting malignant transformation of sinonasal inverted papilloma (SIP) into squamous cell carcinoma (SIP-SCC) before surgery is a clinical need. We aimed to explore the value of deep learning (DL) that leverages nasal endoscopy and T2-weighted magnetic resonance imaging (T2W-MRI) for automated tumor segmentation and differentiation between SIP and SIP-SCC. We conducted a retrospective analysis of 174 patients diagnosed with SIPs, who were divided into a training cohort (n = 121) and a testing cohort (n = 53). Three DL architectures were utilized to train automated segmentation models for endoscopic and T2W-MRI images. DL scores predicting SIP-SCC were generated using DenseNet121 from both modalities and combined to create a dual-modality DL nomogram. The diagnostic performance of the DL models was assessed alongside two radiologists, evaluated through the area under the receiver operating characteristic curve (AUROC), with comparisons made using the Delong method. In the testing cohort, the FCN_ResNet101 and VNet exhibited superior performance in automated segmentation, achieving mean dice similarity coefficients of 0.95 ± 0.03 for endoscopy and 0.93 ± 0.02 for T2W-MRI, respectively. The dual-modality DL nomogram based on automated segmentation demonstrated the highest predictive performance for SIP-SCC (AUROC 0.865), outperforming the radiology resident (AUROC 0.672, p = 0.071) and the attending radiologist (AUROC 0.707, p = 0.066), with a trend toward significance. Notably, both radiologists improved their diagnostic performance with the assistance of the DL nomogram (AUROCs 0.734 and 0.834). The DL framework integrating endoscopy and T2W-MRI offers a fully automated predictive tool for SIP-SCC. The integration of endoscopy and T2W-MRI within a well-established DL framework enables fully automated prediction of SIP-SSC, potentially improving decision-making for patients with suspicious SIP. Detecting the transformation of SIP into SIP-SCC before surgery is both critical and challenging. Endoscopy and T2W-MRI were integrated using DL for predicting SIP-SCC. The dual-modality DL nomogram outperformed two radiologists. The nomogram may improve decision-making for patients with suspicious SIP.

Establishment of AI-assisted diagnosis of the infraorbital posterior ethmoid cells based on deep learning.

Ni T, Qian X, Zeng Q, Ma Y, Xie Z, Dai Y, Che Z

pubmed logopapersJul 21 2025
To construct an artificial intelligence (AI)-assisted model for identifying the infraorbital posterior ethmoid cells (IPECs) based on deep learning using sagittal CT images. Sagittal CT images of 277 samples with and 142 samples without IPECs were retrospectively collected. An experienced radiologist engaged in the relevant aspects picked a sagittal CT image that best showed IPECs. The images were randomly assigned to the training and test sets, with 541 sides in the training set and 97 sides in the test set. The training set was used to perform a five-fold cross-validation, and the results of each fold were used to predict the test set. The model was built using nnUNet, and its performance was evaluated using Dice and standard classification metrics. The model achieved a Dice coefficient of 0.900 in the training set and 0.891 in the additional set. Precision was 0.965 for the training set and 1.000 for the additional set, while sensitivity was 0.981 and 0.967, respectively. A comparison of the diagnostic efficacy between manual outlining by a less-experienced radiologist and AI-assisted outlining showed a significant improvement in detection efficiency (P < 0.05). The AI model aided correctly in identifying and outlining all IPECs, including 12 sides that the radiologist should improve portraying. AI models can help radiologists identify the IPECs, which can further prompt relevant clinical interventions.

Lysophospholipid metabolism, clinical characteristics, and artificial intelligence-based quantitative assessments of chest CT in patients with stable COPD and healthy smokers.

Zhou Q, Xing L, Ma M, Qiongda B, Li D, Wang P, Chen Y, Liang Y, ChuTso M, Sun Y

pubmed logopapersJul 21 2025
The specific role of lysophospholipids (LysoPLs) in the pathogenesis of chronic obstructive pulmonary disease (COPD) is not yet fully understood. We determined serum LysoPLs in 20 patients with stable COPD and 20 healthy smokers using liquid chromatography-mass spectrometry (LC-MS) and matching with the lipidIMMS library, and integrated these data with spirometry, systemic inflammation markers, and quantitative chest CT generated by an automated 3D-U-Net artificial intelligence algorithm model. Our findings identified three differential LysoPLs, lysophosphatidylcholine (LPC) (18:0), LPC (18:1), and LPC (18:2), which were significantly lower in the COPD group than in healthy smokers. Significant negative correlations were observed between these LPCs and the inflammatory markers C-reactive protein and Interleukin-6. LPC (18:0) and (18:2) correlated with higher post-bronchodilator FEV1, and the latter also correlated with FEV1% predicted, forced vital capacity (FVC), and FEV1/FVC ratio. Additionally, these three LPCs were negatively correlated with the volume and percentage of low attenuation areas (LAA), high-attenuation areas (HAA), honeycombing, reticular patterns, ground-glass opacities (GGO), and consolidation on CT imaging. In the patients with COPD, the three LPCs were most significantly associated with HAA and GGO. In conclusion, patients with stable COPD exhibited a unique LysoPL metabolism profile, with LPC (18:0), LPC (18:1), and LPC (18:2) being the most significantly altered lipid molecules. The reduction in these three LPCs was associated with impaired pulmonary function and were also linked to a greater extent of emphysema and interstitial lung abnormalities.
Page 141 of 3993984 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.